July  2015, 11(3): 985-998. doi: 10.3934/jimo.2015.11.985

Electricity day-ahead markets: Computation of Nash equilibria

1. 

Faculdade de Ciências, Universidade do Porto and INESC TEC, Rua do Campo Alegre, 4169-007 Porto, Portugal, Portugal

2. 

Faculdade de Engenharia, Universidade do Porto and INESC TEC, Rua Dr. Roberto Frias, 4200 - 465 Porto, Portugal

Received  May 2012 Revised  June 2014 Published  October 2014

In a restructured electricity sector, day-ahead markets can be modeled as a game where some players - the producers - submit their proposals. To analyze the companies' behavior we have used the concept of Nash equilibrium as a solution in these multi-agent interaction problems. In this paper, we present new and crucial adaptations of two well-known mechanisms, the adjustment process and the relaxation algorithm, in order to achieve the goal of computing Nash equilibria. The advantages of these approaches are highlighted and compared with those available in the literature.
Citation: Margarida Carvalho, João Pedro Pedroso, João Saraiva. Electricity day-ahead markets: Computation of Nash equilibria. Journal of Industrial & Management Optimization, 2015, 11 (3) : 985-998. doi: 10.3934/jimo.2015.11.985
References:
[1]

P. Bajpai and S. N. Singh, Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market,, Power Systems, 22 (2007), 2152.  doi: 10.1109/TPWRS.2007.907445.  Google Scholar

[2]

A. G. Bakirtzis, N. P. Ziogos, A. C. Tellidou and G. A. Bakirtzis, Electricity producer offering strategies in day-ahead energy market with step-wise offers,, Power Systems, 22 (2007), 1804.  doi: 10.1109/TPWRS.2007.907536.  Google Scholar

[3]

T. Barforoushi, M. P. Moghaddam, M. H. Javidi and M. K. Sheikh-El-Eslami, Evaluation of regulatory impacts on dynamic behavior of investments in electricity markets: A new hybrid dp/game framework,, Power Systems, 25 (2010), 1978.  doi: 10.1109/TPWRS.2010.2049034.  Google Scholar

[4]

L. A. Barroso, R. D. Carneiro, S. Granville, M. V. Pereira and M. H. C. Fampa, Nash equilibrium in strategic bidding: A binary expansion approach,, Power Systems, 21 (2006), 629.  doi: 10.1109/TPWRS.2006.873127.  Google Scholar

[5]

M. Carvalho, J. P. Pedroso and J. Saraiva, Nash equilibria in electricity markets,, In The Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization, (2011), 153.   Google Scholar

[6]

A. Conejo and F. Prieto, Mathematical programming and electricity markets,, TOP, 9 (2001), 1.  doi: 10.1007/BF02579062.  Google Scholar

[7]

J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets,, Power Systems, 19 (2004), 195.  doi: 10.1109/TPWRS.2003.820692.  Google Scholar

[8]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems,, 4OR: A Quarterly Journal of Operations Research, 5 (2007), 173.  doi: 10.1007/s10288-007-0054-4.  Google Scholar

[9]

D. Fudenberg and J. Tirole, Game Theory,, MIT Press, (1996).   Google Scholar

[10]

B. A. Gomes, Simulador dos operadores de mercado e sistema num mercado de energia eléctrica considerando restriçøes intertemporais,, Master's thesis, (2005).   Google Scholar

[11]

E. Hasan and F. D. Galiana, Fast computation of pure strategy Nash equilibria in electricity markets cleared by merit order,, Power Systems, 25 (2010), 722.  doi: 10.1109/TPWRS.2009.2037153.  Google Scholar

[12]

B. F. Hobbs, C. B. Metzler and J. -S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, Power Systems, 15 (2000), 638.  doi: 10.1109/59.867153.  Google Scholar

[13]

J. Krawczyk and J. Zuccollo, Nira-3: An improved Matlab package for finding Nash equilibria in infinite games,, Computational Economics, 5 (2006).   Google Scholar

[14]

K. Lee and R. Baldick, Tuning of discretization in bimatrix game approach to power system market analysis,, Power Engineering Review, 22 (2002).  doi: 10.1109/MPER.2002.4311811.  Google Scholar

[15]

M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix and L. A. Barroso, Strategic bidding under uncertainty: A binary expansion approach,, Power Systems, 20 (2005), 180.  doi: 10.1109/TPWRS.2004.840397.  Google Scholar

[16]

D. Pozo and J. Contreras, Finding multiple Nash equilibria in pool-based markets: A stochastic EPEC approach,, Power Systems, 26 (2011), 1744.  doi: 10.1109/TPWRS.2010.2098425.  Google Scholar

[17]

D. Pozo, J. Contreras, Á. Caballero and A. de Andrés, Long-term Nash equilibria in electricity markets,, Electric Power Systems Research, 81 (2011), 329.  doi: 10.1016/j.epsr.2010.09.008.  Google Scholar

[18]

J. Saraiva, J. P. da Silva and M. P. de Leão, Mercados de Electricidade - Regulaçcão de Tarifação de Uso das Redes,, FEUPedições, (2002).   Google Scholar

[19]

Y. S. Son and R. Baldick, Hybrid coevolutionary programming for Nash equilibrium search in games with local optima,, Evolutionary Computation, 8 (2004), 305.  doi: 10.1109/TEVC.2004.832862.  Google Scholar

[20]

A. Vaz and L. Vicente, A particle swarm pattern search method for bound constrained global optimization,, Journal of Global Optimization, 39 (2007), 197.  doi: 10.1007/s10898-007-9133-5.  Google Scholar

show all references

References:
[1]

P. Bajpai and S. N. Singh, Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market,, Power Systems, 22 (2007), 2152.  doi: 10.1109/TPWRS.2007.907445.  Google Scholar

[2]

A. G. Bakirtzis, N. P. Ziogos, A. C. Tellidou and G. A. Bakirtzis, Electricity producer offering strategies in day-ahead energy market with step-wise offers,, Power Systems, 22 (2007), 1804.  doi: 10.1109/TPWRS.2007.907536.  Google Scholar

[3]

T. Barforoushi, M. P. Moghaddam, M. H. Javidi and M. K. Sheikh-El-Eslami, Evaluation of regulatory impacts on dynamic behavior of investments in electricity markets: A new hybrid dp/game framework,, Power Systems, 25 (2010), 1978.  doi: 10.1109/TPWRS.2010.2049034.  Google Scholar

[4]

L. A. Barroso, R. D. Carneiro, S. Granville, M. V. Pereira and M. H. C. Fampa, Nash equilibrium in strategic bidding: A binary expansion approach,, Power Systems, 21 (2006), 629.  doi: 10.1109/TPWRS.2006.873127.  Google Scholar

[5]

M. Carvalho, J. P. Pedroso and J. Saraiva, Nash equilibria in electricity markets,, In The Proceedings of the VII ALIO/EURO Workshop on Applied Combinatorial Optimization, (2011), 153.   Google Scholar

[6]

A. Conejo and F. Prieto, Mathematical programming and electricity markets,, TOP, 9 (2001), 1.  doi: 10.1007/BF02579062.  Google Scholar

[7]

J. Contreras, M. Klusch and J. B. Krawczyk, Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets,, Power Systems, 19 (2004), 195.  doi: 10.1109/TPWRS.2003.820692.  Google Scholar

[8]

F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems,, 4OR: A Quarterly Journal of Operations Research, 5 (2007), 173.  doi: 10.1007/s10288-007-0054-4.  Google Scholar

[9]

D. Fudenberg and J. Tirole, Game Theory,, MIT Press, (1996).   Google Scholar

[10]

B. A. Gomes, Simulador dos operadores de mercado e sistema num mercado de energia eléctrica considerando restriçøes intertemporais,, Master's thesis, (2005).   Google Scholar

[11]

E. Hasan and F. D. Galiana, Fast computation of pure strategy Nash equilibria in electricity markets cleared by merit order,, Power Systems, 25 (2010), 722.  doi: 10.1109/TPWRS.2009.2037153.  Google Scholar

[12]

B. F. Hobbs, C. B. Metzler and J. -S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, Power Systems, 15 (2000), 638.  doi: 10.1109/59.867153.  Google Scholar

[13]

J. Krawczyk and J. Zuccollo, Nira-3: An improved Matlab package for finding Nash equilibria in infinite games,, Computational Economics, 5 (2006).   Google Scholar

[14]

K. Lee and R. Baldick, Tuning of discretization in bimatrix game approach to power system market analysis,, Power Engineering Review, 22 (2002).  doi: 10.1109/MPER.2002.4311811.  Google Scholar

[15]

M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix and L. A. Barroso, Strategic bidding under uncertainty: A binary expansion approach,, Power Systems, 20 (2005), 180.  doi: 10.1109/TPWRS.2004.840397.  Google Scholar

[16]

D. Pozo and J. Contreras, Finding multiple Nash equilibria in pool-based markets: A stochastic EPEC approach,, Power Systems, 26 (2011), 1744.  doi: 10.1109/TPWRS.2010.2098425.  Google Scholar

[17]

D. Pozo, J. Contreras, Á. Caballero and A. de Andrés, Long-term Nash equilibria in electricity markets,, Electric Power Systems Research, 81 (2011), 329.  doi: 10.1016/j.epsr.2010.09.008.  Google Scholar

[18]

J. Saraiva, J. P. da Silva and M. P. de Leão, Mercados de Electricidade - Regulaçcão de Tarifação de Uso das Redes,, FEUPedições, (2002).   Google Scholar

[19]

Y. S. Son and R. Baldick, Hybrid coevolutionary programming for Nash equilibrium search in games with local optima,, Evolutionary Computation, 8 (2004), 305.  doi: 10.1109/TEVC.2004.832862.  Google Scholar

[20]

A. Vaz and L. Vicente, A particle swarm pattern search method for bound constrained global optimization,, Journal of Global Optimization, 39 (2007), 197.  doi: 10.1007/s10898-007-9133-5.  Google Scholar

[1]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[2]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[3]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[4]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[7]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[8]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[9]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[10]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[11]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[12]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[13]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[14]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[15]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[16]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[17]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[18]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[19]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[20]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

[Back to Top]