July  2015, 11(3): 999-1019. doi: 10.3934/jimo.2015.11.999

Barzilai-Borwein-like methods for the extreme eigenvalue problem

1. 

College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

2. 

State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences, Beijing 100190, China

3. 

Hunan Province Key Laboratory of Smart Grids Operation and Control, Changsha University of Science and Technology, Changsha 410004, Hunan Province, China

Received  November 2012 Revised  June 2014 Published  October 2014

We consider numerical methods for the extreme eigenvalue problem of large scale symmetric positive definite matrices. By the variational principle, the extreme eigenvalue can be obtained by minimizing some unconstrained optimization problem. Firstly, we propose two adaptive nonmonotone Barzilai-Borwein-like methods for the unconstrained optimization problem. Secondly, we prove the global convergence of the two algorithms under some conditions. Thirdly, we compare our methods with eigs and the power method for the standard test problems from the UF Sparse Matrix Collection. The primary numerical experiments indicate that the two algorithms are promising.
Citation: Huan Gao, Yu-Hong Dai, Xiao-Jiao Tong. Barzilai-Borwein-like methods for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (3) : 999-1019. doi: 10.3934/jimo.2015.11.999
References:
[1]

G. Auchmuty, Unconstrained variational principles for eigenvalues of real symmetric matrices,, SIAM J. Math. Anal., 20 (1989), 1186.  doi: 10.1137/0520078.  Google Scholar

[2]

J. Barzilai and J. M. Borwein, Two point step size gradient methods,, IMA Journal of Numerical Analysis, 8 (1988), 141.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[3]

Z. Bai, J. Dongarra, A. Ruhe and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,, SIAM, (2000).  doi: 10.1137/1.9780898719581.  Google Scholar

[4]

J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue,, the United States of America: SIAM, (1985).   Google Scholar

[5]

Y. H. Dai, On the nonmonotone line search,, Journal of Optimization Theory and Applications, 112 (2002), 315.  doi: 10.1023/A:1013653923062.  Google Scholar

[6]

Y. H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming,, Numerische Mathematik, 100 (2005), 21.  doi: 10.1007/s00211-004-0569-y.  Google Scholar

[7]

Y. H. Dai, W. W. Hager, K. Schittkowski and H. C. Zhang, The cycle Barzilai-Borwein method for unconstrained optimization,, IMA Journal of Numerical Analysis, 26 (2006), 604.  doi: 10.1093/imanum/drl006.  Google Scholar

[8]

Y. H. Dai and C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search,, SIAM Journal on Optimization, 23 (2013), 296.  doi: 10.1137/100813026.  Google Scholar

[9]

Y. H. Dai and L. Z. Liao, $R$-linear convergence of the Barzilai and Borwein gradient method,, IMA Journal of Numerical Analysis, 22 (2002), 1.  doi: 10.1093/imanum/22.1.1.  Google Scholar

[10]

Y. H. Dai and H. C. Zhang, Adaptive two-point stepsize gradient algorithm,, Numerical Algorithms, 27 (2001), 377.  doi: 10.1023/A:1013844413130.  Google Scholar

[11]

T. A. Davis and Y. H. Hu, The University of Florida Sparse Matrix Collection,, University of Florida, (2011).  doi: 10.1145/2049662.2049663.  Google Scholar

[12]

E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,, Mathematical Programming Series A, 91 (2002), 201.  doi: 10.1007/s101070100263.  Google Scholar

[13]

R. Fletcher, On the Barzilai-Borwein method,, in Optimization and Control with Applications (eds. L.Q. Qi, 96 (2005), 235.  doi: 10.1007/0-387-24255-4_10.  Google Scholar

[14]

L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton's method,, SIAM Journal on Numerical Analysis, 23 (1986), 707.  doi: 10.1137/0723046.  Google Scholar

[15]

G. H. Golub and C. F. Van Loan, Matrix computation,, $3^{nd}$ edition, (1996).   Google Scholar

[16]

W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search,, SIAM Journal on Optimization, 16 (2005), 170.  doi: 10.1137/030601880.  Google Scholar

[17]

B. Jiang and Y. H. Dai, Feasible Barzilai-Borwein-like methods for extreme symmetric eigenvalue problems,, Optimization Methods and Software, 28 (2013), 756.  doi: 10.1080/10556788.2012.656115.  Google Scholar

[18]

M. Mongeau and M. Torki, Computing eigenelements of real symmetric matrices via optimization,, Computational Optimization and Applications, 29 (2004), 263.  doi: 10.1023/B:COAP.0000044182.33308.82.  Google Scholar

[19]

M. Raydan, On the Barzilai and Borwein of steplength for gradient method,, IMA Journal of Numerical Analysis, 13 (1993), 321.  doi: 10.1093/imanum/13.3.321.  Google Scholar

[20]

Y. Saad, Numerical Methods for Large Eigenvalue Problems,, Manchester University: The Society of Industrial and Applied Mathematics, (2011).  doi: 10.1137/1.9781611970739.  Google Scholar

[21]

A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem computations,, SIAM Journal on Numerical Analysis, 19 (1982), 1243.  doi: 10.1137/0719089.  Google Scholar

[22]

P. L. Toint, Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints,, Mathematical Programming, 77 (1997), 69.  doi: 10.1007/BF02614518.  Google Scholar

[23]

H. C. Zhang and W. W. Hager, PACBB: A projected adaptive CBB (PACBB) method for box constrained optimization,, Nonconvex Optimization and Its Applications, 82 (2006), 387.   Google Scholar

[24]

B. Zhou, L. Gao and Y. H. Dai, Gradient methods with adaptive step sizes,, Computation Optimization and Applications, 35 (2006), 69.  doi: 10.1007/s10589-006-6446-0.  Google Scholar

show all references

References:
[1]

G. Auchmuty, Unconstrained variational principles for eigenvalues of real symmetric matrices,, SIAM J. Math. Anal., 20 (1989), 1186.  doi: 10.1137/0520078.  Google Scholar

[2]

J. Barzilai and J. M. Borwein, Two point step size gradient methods,, IMA Journal of Numerical Analysis, 8 (1988), 141.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[3]

Z. Bai, J. Dongarra, A. Ruhe and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,, SIAM, (2000).  doi: 10.1137/1.9780898719581.  Google Scholar

[4]

J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue,, the United States of America: SIAM, (1985).   Google Scholar

[5]

Y. H. Dai, On the nonmonotone line search,, Journal of Optimization Theory and Applications, 112 (2002), 315.  doi: 10.1023/A:1013653923062.  Google Scholar

[6]

Y. H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming,, Numerische Mathematik, 100 (2005), 21.  doi: 10.1007/s00211-004-0569-y.  Google Scholar

[7]

Y. H. Dai, W. W. Hager, K. Schittkowski and H. C. Zhang, The cycle Barzilai-Borwein method for unconstrained optimization,, IMA Journal of Numerical Analysis, 26 (2006), 604.  doi: 10.1093/imanum/drl006.  Google Scholar

[8]

Y. H. Dai and C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search,, SIAM Journal on Optimization, 23 (2013), 296.  doi: 10.1137/100813026.  Google Scholar

[9]

Y. H. Dai and L. Z. Liao, $R$-linear convergence of the Barzilai and Borwein gradient method,, IMA Journal of Numerical Analysis, 22 (2002), 1.  doi: 10.1093/imanum/22.1.1.  Google Scholar

[10]

Y. H. Dai and H. C. Zhang, Adaptive two-point stepsize gradient algorithm,, Numerical Algorithms, 27 (2001), 377.  doi: 10.1023/A:1013844413130.  Google Scholar

[11]

T. A. Davis and Y. H. Hu, The University of Florida Sparse Matrix Collection,, University of Florida, (2011).  doi: 10.1145/2049662.2049663.  Google Scholar

[12]

E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,, Mathematical Programming Series A, 91 (2002), 201.  doi: 10.1007/s101070100263.  Google Scholar

[13]

R. Fletcher, On the Barzilai-Borwein method,, in Optimization and Control with Applications (eds. L.Q. Qi, 96 (2005), 235.  doi: 10.1007/0-387-24255-4_10.  Google Scholar

[14]

L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton's method,, SIAM Journal on Numerical Analysis, 23 (1986), 707.  doi: 10.1137/0723046.  Google Scholar

[15]

G. H. Golub and C. F. Van Loan, Matrix computation,, $3^{nd}$ edition, (1996).   Google Scholar

[16]

W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search,, SIAM Journal on Optimization, 16 (2005), 170.  doi: 10.1137/030601880.  Google Scholar

[17]

B. Jiang and Y. H. Dai, Feasible Barzilai-Borwein-like methods for extreme symmetric eigenvalue problems,, Optimization Methods and Software, 28 (2013), 756.  doi: 10.1080/10556788.2012.656115.  Google Scholar

[18]

M. Mongeau and M. Torki, Computing eigenelements of real symmetric matrices via optimization,, Computational Optimization and Applications, 29 (2004), 263.  doi: 10.1023/B:COAP.0000044182.33308.82.  Google Scholar

[19]

M. Raydan, On the Barzilai and Borwein of steplength for gradient method,, IMA Journal of Numerical Analysis, 13 (1993), 321.  doi: 10.1093/imanum/13.3.321.  Google Scholar

[20]

Y. Saad, Numerical Methods for Large Eigenvalue Problems,, Manchester University: The Society of Industrial and Applied Mathematics, (2011).  doi: 10.1137/1.9781611970739.  Google Scholar

[21]

A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem computations,, SIAM Journal on Numerical Analysis, 19 (1982), 1243.  doi: 10.1137/0719089.  Google Scholar

[22]

P. L. Toint, Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints,, Mathematical Programming, 77 (1997), 69.  doi: 10.1007/BF02614518.  Google Scholar

[23]

H. C. Zhang and W. W. Hager, PACBB: A projected adaptive CBB (PACBB) method for box constrained optimization,, Nonconvex Optimization and Its Applications, 82 (2006), 387.   Google Scholar

[24]

B. Zhou, L. Gao and Y. H. Dai, Gradient methods with adaptive step sizes,, Computation Optimization and Applications, 35 (2006), 69.  doi: 10.1007/s10589-006-6446-0.  Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[6]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[17]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[18]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[19]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[20]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (222)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]