Citation: |
[1] |
J. R. Birge, Quasi-Monte Carlo Approaches to Option Pricing, Technical Report 94-19, Department of Industrial and Operations Engineering, University of Michigan, 1994. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[3] |
X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Mathematics of Operations Research, 30 (2005), 1022-1038.doi: 10.1287/moor.1050.0160. |
[4] |
X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Mathematical Programming, 117 (2009), 51-80.doi: 10.1007/s10107-007-0163-z. |
[5] |
D. De Wolf and Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot equilibrium model, Management Science, 43 (1997), 190-197. |
[6] |
A. Fischer, A special Newton-type optimization method, Optimization, 24 (1992), 269-284.doi: 10.1080/02331939208843795. |
[7] |
F. Facchinei and C. Kanzow, Generalized Nash equilibrium problems, A Quarterly Journal of Operations Research, 5 (2007), 173-210.doi: 10.1007/s10288-007-0054-4. |
[8] |
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003.doi: 10.1007/b97544. |
[9] |
H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ matrix linear complementarity problems, SIAM Journal on Optimization, 18 (2007), 482-506.doi: 10.1137/050630805. |
[10] |
G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solution of stochastic variational inequalities, Mathematical Programming, 84 (1999), 313-333.doi: 10.1007/s101070050024. |
[11] |
J. Gao and Y. Liu, Stochastic Nash equilibrium with a numerical solution method, Computer Science, 3496 (2005), 811-816.doi: 10.1007/11427391_130. |
[12] |
J. B. Krawczyk, Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems, Computational Management Science, 4 (2007), 183-204.doi: 10.1007/s10287-006-0033-9. |
[13] |
C. Ling, L. Qi, G. Zhou and L. Caccetta, The $SC^1$ property of an expected residual function arising from stochastic complementarity problems, Operations Research Letters, 36 (2008), 456-460.doi: 10.1016/j.orl.2008.01.010. |
[14] |
G. H. Lin, X. Chen and M. Fukushima, New restricted NCP function and their applications to stochastic NCP and stochastic MPEC, Optimization, 56 (2007), 641-953.doi: 10.1080/02331930701617320. |
[15] |
G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity problems, Optimization Methods and Software, 21 (2006), 551-564.doi: 10.1080/10556780600627610. |
[16] |
P. Y. Li, Z. F. He and G. H. Lin, Sampling average approximation method for a class of stochastic Nash equilibrium problems, Optimization Methods and Software, 28 (2013), 785-795.doi: 10.1080/10556788.2012.750321. |
[17] |
H. Mukaidani, Stochastic Nash equilibrium seeking for games with general nonlinear payoffs, SIAM Journal on Control and Optimization, 49 (2011), 1659-1679.doi: 10.1137/100811738. |
[18] |
H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia, SIAM, 1992.doi: 10.1137/1.9781611970081. |
[19] |
J. F. Nash, Non-Cooperative games, Annals of Mathematics, 54 (1951), 286-295.doi: 10.2307/1969529. |
[20] |
R. T. Rockafellar and R. J. B.wets, Variational Analysis, Springer-Verlag, Berlin Heidelberg, 1998.doi: 10.1007/978-3-642-02431-3. |
[21] |
A. Shapiro, Monte Carlo sampling approch to stochastic programming, European Series of Applied and Industrial Mathematics: Proceeding, 13 (2003), 65-73. |
[22] |
A. Shapiro, Monte carlo sampling methods, stochastic programming, Handbooks in Operations Research and Management Science, 10 (2003), 353-425.doi: 10.1016/S0927-0507(03)10006-0. |
[23] |
A. Shapiro and H. F. Xu, Stochasic mathematical programs with equiblbrium constraints, modelling and sample average approximation, Optimization, 57 (2008), 395-418.doi: 10.1080/02331930801954177. |
[24] |
P. Tseng, Growth behavior of a class of merit functions for the nonlinear complementarity problem, Journal of Optimization Theory and Applications, 89 (1996), 17-37.doi: 10.1007/BF02192639. |
[25] |
H. F. Xu and D. L. Zhang, Stochastic Nash equilibrium problems: Sample average approximation and applications, Computational Optimization and Applications, 55 (2013), 597-645.doi: 10.1007/s10589-013-9538-7. |
[26] |
H. F. Xu and D. L. Zhang, Smooth sample average appproximation of stationary points in nonsmooth stochastic optimization and applications, Mathematical Programming Series A, 119 (2009), 371-401.doi: 10.1007/s10107-008-0214-0. |
[27] |
Y. H. Yuan, L. W. Zhang and Y. Wu, A smoothing Newton method based on sample average approximation for a class of stochastic generalized Nash equilibrium problems, Pacific Journal of Optimization, In Press. |
[28] |
C. Zhang and X. Chen, Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty, Journal of Optimization Theory and Applications, 137 (2008), 277-295.doi: 10.1007/s10957-008-9358-6. |