Citation: |
[1] |
N. E. Abboud, A discrete-time Markov production-inventory model with machine breakdowns, Computers and Industrial Engineering, 39 (2001), 95-107.doi: 10.1016/S0360-8352(00)00070-X. |
[2] |
M. H. Al-Rifai and M. D. Rossetti, An efficient heuristic optimization algorithm for a two-echelon (R, Q) inventory system, International Journal of Production Economics, 109 (2007), 195-213.doi: 10.1016/j.ijpe.2006.12.052. |
[3] |
F. B. Atoei, E. Teimory and A. B. Amiri, Designing reliable supply chain network with disruption risk, International Journal of Industrial Engineering Computations, 4 (2013), 111-126. |
[4] |
S. Bag, D. Chakraborty and A. R. Roy, A production inventory model with fuzzy random demand and with flexibility and reliability considerations, Computers and Industrial Engineering, 56 (2009), 411-416.doi: 10.1016/j.cie.2008.07.001. |
[5] |
A. Baghalian, S. Rezapour and R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.doi: 10.1016/j.ejor.2012.12.017. |
[6] |
J. Banks, J. Carson, B. Nelson and D. Nicol, Discrete-event system simulation, $5^{th}$ Edition, Prentice Hall, USA, 2014. |
[7] |
J. M. Betts, Calculating target inventory levels for constrained production: A fast simulation-based approximation, Computers and Operations Research, 49 (2014), 18-27.doi: 10.1016/j.cor.2014.03.014. |
[8] |
C. Blome and M. Henke, Single Versus Multiple Sourcing: A Supply Risk Management Perspective, in Supply Chain Risk (eds. G. A. Zsidisin and B. Ritchie), Springer, 124 (2009), 125-135.doi: 10.1007/978-0-387-79934-6_8. |
[9] |
C. Blome and T. Schoenherr, Supply chain risk management in financial crises-A multiple case-study approach, International Journal of Production Economics, 134 (2011), 43-57.doi: 10.1016/j.ijpe.2011.01.002. |
[10] |
J. R. Bradley, An improved method for managing catastrophic supply chain disruptions, Business Horizons, 57 (2014), 483-495.doi: 10.1016/j.bushor.2014.03.003. |
[11] |
Z. H. Che, A particle swarm optimization algorithm for solving unbalanced supply chain planning problems, Applied Soft Computing, 12 (2012), 1279-1287.doi: 10.1016/j.asoc.2011.12.006. |
[12] |
L.-M. Chen, Y. E. Liu and S.-J. S. Yang, Robust supply chain strategies for recovering from unanticipated disasters, Transportation Research Part E: Logistics and Transportation Review, 77 (2015), 198-214.doi: 10.1016/j.tre.2015.02.015. |
[13] |
T. C. E. Cheng, An economic production quantity model with flexibility and reliability considerations, European Journal of Operational Research, 39 (1989), 174-179.doi: 10.1016/0377-2217(89)90190-2. |
[14] |
S. W. Chiu, C. L. Chou and W. K. Wu, Optimizing replenishment policy in an EPQ-based inventory model with nonconforming items and breakdown, Economic Modelling, 35 (2013), 330-337.doi: 10.1016/j.econmod.2013.07.004. |
[15] |
S. W. Chiu, S. L. Wang and Y. S. P. Chiu, Determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns, European Journal of Operational Research, 180 (2007), 664-676.doi: 10.1016/j.ejor.2006.05.005. |
[16] |
S. Chopra, G. Reinhardt and U. Mohan, The importance of decoupling recurrent and disruption risks in a supply chain, Naval Research Logistics, 54 (2007), 544-555.doi: 10.1002/nav.20228. |
[17] |
S. Chopra and M. S. Sodhi, Managing Risk To Avoid Supply-Chain Breakdown, MIT Sloan Management Review, 46 (2004), 53-61. |
[18] |
S. Chopra and M. S. Sodhi, Reducing the risk of supply chain disruptions, MIT Sloan Management Review, 55 (2014), 73-80. |
[19] |
A. Costa, G. Celano, S. Fichera and E. Trovato, A new efficient encoding/decoding procedure for the design of a supply chain network with genetic algorithms, Computers and Industrial Engineering, 59 (2010), 986-999.doi: 10.1016/j.cie.2010.09.011. |
[20] |
C. W. Craighead, J. Blackhurst, M. J. Rungtusanatham and R. B. Handfield, The severity of supply chain disruptions: Design characteristics and mitigation capabilities, Decision Sciences, 38 (2007), 131-156.doi: 10.1111/j.1540-5915.2007.00151.x. |
[21] |
P. Dadhich, A. Genovese, N. Kumar and A. Acquaye, Developing sustainable supply chains in the UK construction industry: A case study, International Journal of Production Economics, 164 (2015), 271-284.doi: 10.1016/j.ijpe.2014.12.012. |
[22] |
M. M. de Barros and A. Szklo, Petroleum refining flexibility and cost to address the risk of ethanol supply disruptions: The case of Brazil, Renewable Energy, 77 (2015), 20-31.doi: 10.1016/j.renene.2014.11.081. |
[23] |
L. A. Deleris and F. Erhun, Risk management in supply networks using monte-carlo simulation, Proceedings of the 2005 winter Simulation conference, (2005), 1643-1649.doi: 10.1109/WSC.2005.1574434. |
[24] |
A. Diabat, Hybrid algorithm for a vendor managed inventory system in a two-echelon supply chain, European Journal of Operational Research, 238 (2014), 114-121.doi: 10.1016/j.ejor.2014.02.061. |
[25] |
D. D. Eisenstein, Recovering Cyclic Schedules Using Dynamic Produce-Up-To Policies, Operations Research, 53 (2005), 675-688.doi: 10.1287/opre.1040.0201. |
[26] |
J. Fang, L. Zhao, J. C. Fransoo and T. Van Woensel, Sourcing strategies in supply risk management: An approximate dynamic programming approach, Computers and Operations Research, 40 (2013), 1371-1382.doi: 10.1016/j.cor.2012.08.016. |
[27] |
P. Finch, Supply chain risk management, Supply Chain Management: An International Journal, 9 (2004), 183-196.doi: 10.1108/13598540410527079. |
[28] |
T. L. Friesz, I. Lee and C. C. Lin, Competition and disruption in a dynamic urban supply chain, Transportation Research Part B: Methodological, 45 (2011), 1212-1231.doi: 10.1016/j.trb.2011.05.005. |
[29] |
G. Gallego, When is a base stock policy optimal in recovering disrupted cyclic schedules?, Naval Research Logistics, 41 (1994), 317-333.doi: 10.1002/1520-6750(199404)41:3<317::AID-NAV3220410303>3.0.CO;2-T. |
[30] |
L. C. Giunipero and R. A. Eltantawy, Securing the upstream supply chain: A risk management approach, International Journal of Physical Distribution and Logistics Management, 34 (2004), 698-713.doi: 10.1108/09600030410567478. |
[31] |
X. Gong, X. Chao and S. Zheng, Dynamic Pricing and Inventory Management with Dual Suppliers of Different Leadtimes and Disruption Risks, Production and Operations Management, 23 (2014), 2058-2074. |
[32] |
P. Guchhait, M. K. Maiti and M. Maiti, A production inventory model with fuzzy production and demand using fuzzy differential equation: An interval compared genetic algorithm approach, Engineering Applications of Artificial Intelligence, 26 (2013), 766-778.doi: 10.1016/j.engappai.2012.10.017. |
[33] |
R. K. Gupta, A. K. Bhunia and S. K. Goyal, An application of Genetic Algorithm in solving an inventory model with advance payment and interval valued inventory costs, Mathematical and Computer Modelling, 49 (2009), 893-905.doi: 10.1016/j.mcm.2008.09.015. |
[34] |
H. S. Heese, Single versus Multiple Sourcing and the Evolution of Bargaining Positions, Omega, 54 (2015), 125-133.doi: 10.1016/j.omega.2015.01.016. |
[35] |
J. Hill and M. Galbreth, A heuristic for single-warehouse multiretailer supply chains with all-unit transportation cost discounts, European Journal of Operational Research, 187 (2008), 473-482.doi: 10.1016/j.ejor.2007.03.015. |
[36] |
H. Hishamuddin, Optimal Inventory Policies for Multi-Echelon Supply Chain Systems with Disruption, Ph.D thesis, The University of New South Wales, Canberra, Australia, 2013. |
[37] |
H. Hishamuddin, R. A. Sarker and D. Essam, A disruption recovery model for a single stage production-inventory system, European Journal of Operational Research, 222 (2012), 464-473.doi: 10.1016/j.ejor.2012.05.033. |
[38] |
H. Hishamuddin, R. A. Sarker and D. Essam, A recovery model for a two-echelon serial supply chain with consideration of transportation disruption, Computers and Industrial Engineering, 64 (2013), 552-561.doi: 10.1016/j.cie.2012.11.012. |
[39] |
H. Hishamuddin, R. A. Sarker and D. Essam, A recovery mechanism for a two echelon supply chain system under supply disruption, Economic Modelling, 38 (2014), 555-563.doi: 10.1016/j.econmod.2014.02.004. |
[40] |
J. Hou, A. Z. Zeng and L. Zhao, Coordination with a backup supplier through buy-back contract under supply disruption, Transportation Research Part E: Logistics and Transportation Review, 46 (2010), 881-895.doi: 10.1016/j.tre.2010.03.004. |
[41] |
F. Hu, C. C. Lim, Z. Lu and X. Sun, Coordination in a Single-Retailer Two-Supplier Supply Chain under Random Demand and Random Supply with Disruption, Discrete Dynamics in Nature and Society, 2013 (2013), 1-12. |
[42] |
C. Huang, G. Yu, S. Wang and X. Wang, Disruption management for supply chain coordination with exponential demand function, Acta Mathematica Scientia, 26 (2006), 655-669.doi: 10.1016/S0252-9602(06)60092-1. |
[43] |
M. Y. Jaber, M. Bonney and I. Moualek, An economic order quantity model for an imperfect production process with entropy cost, International Journal of Production Economics, 118 (2009), 26-33.doi: 10.1016/j.ijpe.2008.08.007. |
[44] |
N. Jawahar and A. N. Balaji, A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge, European Journal of Operational Research, 194 (2009), 496-537.doi: 10.1016/j.ejor.2007.12.005. |
[45] |
E. J. L. Jr and S. Taskin, An insurance risk management framework for disaster relief and supply chain disruption inventory planning, Journal of Operational Research Society, 59 (2008), 674-684. |
[46] |
Ö. Kabak and F. Ülengin, Possibilistic linear-programming approach for supply chain networking decisions, European Journal of Operational Research, 209 (2011), 253-264.doi: 10.1016/j.ejor.2010.09.025. |
[47] |
B. B. Keskin, S. H. Melouk and I. L. Meyer, A simulation-optimization approach for integrated sourcing and inventory decisions, Computers and Operations Research, 37 (2010), 1648-1661.doi: 10.1016/j.cor.2009.12.012. |
[48] |
P. R. Kleindorfer and G. H. Saad, Managing disruption risks in supply chains, Production and Operations Management, 14 (2005), 53-68.doi: 10.1111/j.1937-5956.2005.tb00009.x. |
[49] |
R. Kuik and M. Salomon, Multi-level lot-sizing problem: Evaluation of a simulated-annealing heuristic, European Journal of Operational Research, 45 (1990), 25-37.doi: 10.1016/0377-2217(90)90153-3. |
[50] |
O. Lavastre, A. Gunasekaran and A. Spalanzani, Supply chain risk management in French companies, Decision Support Systems, 52 (2012), 828-838.doi: 10.1016/j.dss.2011.11.017. |
[51] |
K.-N. F. Leung, A generalized geometric-programming solution to "An economic production quantity model with flexibility and reliability considerations," European Journal of Operational Research, 176 (2007), 240-251.doi: 10.1016/j.ejor.2005.06.049. |
[52] |
X. Li and Y. Chen, Impacts of supply disruptions and customer differentiation on a partial-backordering inventory system, Simulation Modelling Practice and Theory, 18 (2010), 547-557.doi: 10.1016/j.simpat.2009.12.010. |
[53] |
J. Li, S. Wang and T. C. E. Cheng, Competition and cooperation in a single-retailer two-supplier supply chain with supply disruption, International Journal of Production Economics, 124 (2010), 137-150.doi: 10.1016/j.ijpe.2009.10.017. |
[54] |
Z. Li, S. H. Xu and J. Hayya, A Periodic-Review Inventory System With Supply Interruptions, Probability in the Engineering and Informational Sciences, 18 (2004), 33-53.doi: 10.1017/S0269964804181035. |
[55] |
C. J. Liao, C. C. Shyu and C. T. Tseng, A least flexibility first heuristic to coordinate setups in a two- or three-stage supply chain, International Journal of Production Economics, 117 (2009), 127-135.doi: 10.1016/j.ijpe.2008.10.002. |
[56] |
C. J. Liao, Y. L. Tsai and C. W. Chao, An ant colony optimization algorithm for setup coordination in a two-stage production system, Applied Soft Computing, 11 (2011), 4521-4529.doi: 10.1016/j.asoc.2011.08.014. |
[57] |
G. C. Lin and D. C. Gong, On a production-inventory system of deteriorating items subject to random machine breakdowns with a fixed repair time, Mathematical and Computer Modelling, 43 (2006), 920-932.doi: 10.1016/j.mcm.2005.12.013. |
[58] |
S. C. Liu and J. R. Chen, A heuristic method for the inventory routing and pricing problem in a supply chain, Expert Systems with Applications, 38 (2011), 1447-1456.doi: 10.1016/j.eswa.2010.07.051. |
[59] |
F. Longo and G. Mirabelli, An advanced supply chain management tool based on modeling and simulation, Computers and Industrial Engineering, 54 (2008), 570-588.doi: 10.1016/j.cie.2007.09.008. |
[60] |
M. Lu, S. Huang and Z. J. M. Shen, Product substitution and dual sourcing under random supply failures, Transportation Research Part B: Methodological, 45 (2011), 1251-1265.doi: 10.1016/j.trb.2010.09.005. |
[61] |
I. Manuj and J. T. Mentzer, Global supply chain risk management, Journal of Business Logistics, 29 (2008), 133-155.doi: 10.1002/j.2158-1592.2008.tb00072.x. |
[62] |
M. A. A. Masud, S. K. Paul and A. Azeem, Optimisation of a production inventory model with reliability considerations, International Journal of Logistics Systems and Management, 17 (2014), 22-45.doi: 10.1504/IJLSM.2014.057979. |
[63] |
M. Mobini, T. Sowlati and S. Sokhansanj, A simulation model for the design and analysis of wood pellet supply chains, Applied Energy, 111 (2013), 1239-1249.doi: 10.1016/j.apenergy.2013.06.026. |
[64] |
E. Mohebbi, A replenishment model for the supply-uncertainty problem, International Journal of Production Economics, 87 (2004), 25-37.doi: 10.1016/S0925-5273(03)00098-7. |
[65] |
E. Mohebbi and D. Hao, An inventory model with non-resuming randomly interruptible lead time, International Journal of Production Economics, 114 (2008), 755-768.doi: 10.1016/j.ijpe.2008.03.009. |
[66] |
K. Moinzadeh and P. Aggarwal, Analysis of a Production/Inventory System Subject to Random Disruptions, Management Science, 43 (1997), 1577-1588.doi: 10.1287/mnsc.43.11.1577. |
[67] |
A. R. Nia, M. H. Far and S. T. A. Niaki, A fuzzy vendor managed inventory of multi-item economic order quantity model under shortage: An ant colony optimization algorithm, International Journal of Production Economics, 155 (2014), 259-271. |
[68] |
A. Oke and M. Gopalakrishnan, Managing disruptions in supply chains: A case study of a retail supply chain, International Journal of Production Economics, 118 (2009), 168-174.doi: 10.1016/j.ijpe.2008.08.045. |
[69] |
S. Özekici and M. Parlar, Inventory models with unreliable suppliers in a random environment, Annals of Operations Research, 91 (1999), 123-136.doi: 10.1023/A:1018937420735. |
[70] |
B. Pal, S. S. Sana and K. Chaudhuri, Maximising profits for an EPQ model with unreliable machine and rework of random defective items, International Journal of System Science, 44 (2013), 582-594.doi: 10.1080/00207721.2011.617896. |
[71] |
B. Pal, S. S. Sana and K. Chaudhuri, Joint pricing and ordering policy for two echelon imperfect production inventory model with two cycles, International Journal of Production Economics, 155 (2013), 229-238.doi: 10.1016/j.ijpe.2013.11.027. |
[72] |
B. Pal, S. S. Sana and K. Chaudhuri, A multi-echelon supply chain model for reworkable items in multiple-markets with supply disruption, Economic Modelling, 29 (2012), 1891-1898.doi: 10.1016/j.econmod.2012.06.005. |
[73] |
B. Pal, S. S. Sana and K. Chaudhuri, A multi-echelon production-inventory system with supply disruption, Journal of Manufacturing Systems, 33 (2014), 262-276.doi: 10.1016/j.jmsy.2013.12.010. |
[74] |
D. Panda and M. Maiti, Multi-item inventory models with price dependent demand under flexibility and reliability consideration and imprecise space constraint: A geometric programming approach, Mathematical and Computer Modelling, 49 (2009), 1733-1749.doi: 10.1016/j.mcm.2008.10.019. |
[75] |
M. Parlar and D. Berkin, Future supply uncertainty in EOQ models, Naval Research Logistics, 38 (1991), 107-121.doi: 10.1002/1520-6750(199102)38:1<107::AID-NAV3220380110>3.0.CO;2-4. |
[76] |
M. Parlar and D. Perry, Inventory models of future supply uncertainty with single and multiple suppliers, Naval Research Logistics, 43 (1996), 191-210. |
[77] |
S. H. R. Pasandideh, S. T. A. Niaki and A. R. Nia, A genetic algorithm for vendor managed inventory control system of multi-product multi-constraint economic order quantity model, Expert Systems with Applications, 38 (2011), 2708-2716. |
[78] |
S. K. Paul, A. Azeem, R. Sarker and D. Essam, Development of a production inventory model with uncertainty and reliability considerations, Optimization and Engineering, 15 (2014), 697-720.doi: 10.1007/s11081-013-9218-6. |
[79] |
S. K. Paul, R. Sarker and D. Essam, Managing real-time demand fluctuation under a supplier-retailer coordinated system, International Journal of Production Economics, 158 (2014), 231-243.doi: 10.1016/j.ijpe.2014.08.007. |
[80] |
S. K. Paul, R. Sarker and D. Essam, A disruption recovery model in a production-inventory system with demand uncertainty and process reliability, Leture Notes in Computer Science, 8104 (2013), 511-522.doi: 10.1007/978-3-642-40925-7_47. |
[81] |
S. K. Paul, R. Sarker and D. Essam, Real time disruption management for a two-stage batch production-inventory system with reliability considerations, European Journal of Operational Research, 237 (2014), 113-128.doi: 10.1016/j.ejor.2014.02.005. |
[82] |
S. K. Paul, R. Sarker and D. Essam, Managing disruption in an imperfect production-inventory system, Computers and Industrial Engineering, 84 (2015), 101-112.doi: 10.1016/j.cie.2014.09.013. |
[83] |
S. K. Paul, R. Sarker and D. Essam, A disruption recovery plan in a three-stage production-inventory system, Computers and Operations Research, 57 (2015), 60-72.doi: 10.1016/j.cor.2014.12.003. |
[84] |
S. K. Paul, R. Sarker and D. Essam, Managing supply disruption in a three-tier supply chain with multiple suppliers and retailers, in 2014 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Malaysia, 2014, 194-198.doi: 10.1109/IEEM.2014.7058627. |
[85] |
S. Perron, P. Hansen, S. Le Digabel and N. Mladenovic, Exact and heuristic solutions of the global supply chain problem with transfer pricing, European Journal of Operational Research, 202 (2010), 864-879.doi: 10.1016/j.ejor.2009.06.018. |
[86] |
F. Persson, SCOR template-A simulation based dynamic supply chain analysis tool, International Journal of Production Economics, 131 (2011), 288-294.doi: 10.1016/j.ijpe.2010.09.029. |
[87] |
H. Pierreval, R. Bruniaux and C. Caux, A continuous simulation approach for supply chains in the automotive industry, Simulation Modelling Practice and Theory, 15 (2007), 185-198.doi: 10.1016/j.simpat.2006.09.019. |
[88] |
L. Qi, A continuous-review inventory model with random disruptions at the primary supplier, European Journal of Operational Research, 225 (2013), 59-74.doi: 10.1016/j.ejor.2012.09.035. |
[89] |
X. Qi, J. F. Bard and G. Yu, Supply chain coordination with demand disruptions, Omega, 32 (2004), 301-312.doi: 10.1016/j.omega.2003.12.002. |
[90] |
L. Qi, Z. J. M. Shen and L. V. Snyder, The effect of supply disruptions on supply chain design decisions, Transportation Science, 44 (2010), 274-289.doi: 10.1287/trsc.1100.0320. |
[91] |
U. Ramanathan, Performance of supply chain collaboration-A simulation study, Expert Systems with Applications, 41 (2014), 210-220.doi: 10.1016/j.eswa.2013.07.022. |
[92] |
A. M. Ross, Y. Rong and L. V. Snyder, Supply disruptions with time-dependent parameters, Computers and Operations Research, 35 (2008), 3504-3529.doi: 10.1016/j.cor.2007.01.018. |
[93] |
M. S. Sajadieh and A. Thorstenson, Comparing sourcing strategies in two-echelon supply chains, Computers and Operations Research, 45 (2014), 108-115.doi: 10.1016/j.cor.2013.12.006. |
[94] |
N. Salehi Sadghiani, S. a. Torabi and N. Sahebjamnia, Retail supply chain network design under operational and disruption risks, Transportation Research Part E: Logistics and Transportation Review, 75 (2015), 95-114.doi: 10.1016/j.tre.2014.12.015. |
[95] |
S. S. Sana, A production-inventory model in an imperfect production process, European Journal of Operational Research, 200 (2010), 451-464.doi: 10.1016/j.ejor.2009.01.041. |
[96] |
S. S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain, Decision Support Systems, 50 (2011), 539-547.doi: 10.1016/j.dss.2010.11.012. |
[97] |
B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system, Applied Mathematics and Computation, 217 (2011), 6159-6167.doi: 10.1016/j.amc.2010.12.098. |
[98] |
T. Sawik, Optimization of cost and service level in the presence of supply chain disruption risks: Single vs. multiple sourcing, Computers and Operations Research, 51 (2014), 11-20.doi: 10.1016/j.cor.2014.04.006. |
[99] |
A. J. Schmitt and M. Singh, Quantifying supply chain disruption risk using Monte Carlo and discrete-event simulation, in Proceedings of the 2009 Winter Simulation conference, 2009, 1237-1248.doi: 10.1109/WSC.2009.5429561. |
[100] |
A. J. Schmitt and M. Singh, A quantitative analysis of disruption risk in a multi-echelon supply chain, International Journal of Production Economics, 139 (2012), 22-32. |
[101] |
A. J. Schmitt, L. V. Snyder and Z. J. M. Shen, Inventory systems with stochastic demand and supply: Properties and approximations, European Journal of Operational Research, 206 (2010), 313-328.doi: 10.1016/j.ejor.2010.02.029. |
[102] |
A. J. Schmitt and L. V. Snyder, Infinite-horizon models for inventory control under yield uncertainty and disruptions, Computers and Operations Research, 39 (2012), 850-862.doi: 10.1016/j.cor.2010.08.004. |
[103] |
D. A. Serel, Production and pricing policies in dual sourcing supply chains, Transportation Research Part E: Logistics and Transportation Review, 76 (2015), 1-12.doi: 10.1016/j.tre.2015.01.007. |
[104] |
X.-F. Shao and M. Dong, Supply disruption and reactive strategies in an assemble-to-order supply chain with time-sensitive demand, IEEE Transactions on Engineering Management, 59 (2012), 201-212.doi: 10.1109/TEM.2010.2066280. |
[105] |
L. Silbermayr and S. Minner, A multiple sourcing inventory model under disruption risk, International Journal of Production Economics, 149 (2014), 37-46.doi: 10.1016/j.ijpe.2013.03.025. |
[106] |
C. A. Silva, J. M. C. Sousa, T. A. Runkler and J. M. G. Sáda Costa, Distributed supply chain management using ant colony optimization, European Journal of Operational Research, 199 (2009), 349-358.doi: 10.1016/j.ejor.2008.11.021. |
[107] |
J. B. Skipper and J. B. Hanna, Minimizing supply chain disruption risk through enhanced flexibility, International Journal of Physical Distribution and Logistics Management, 39 (2009), 404-427. |
[108] |
L. V. Snyder, A tight approximation for an EOQ model with supply disruptions, International Journal of Production Economics, 155 (2014), 91-108.doi: 10.1016/j.ijpe.2014.01.025. |
[109] |
F. Talbot and J. Patterson, Optimal methods for scheduling project under resource constraints, Project Management Quarterly, 1979. |
[110] |
A. A. Taleizadeh, L. E. Cárdenas-Barrón and B. Mohammadi, A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process, International Journal of Production Economics, 150 (2014), 9-27.doi: 10.1016/j.ijpe.2013.11.023. |
[111] |
C. Tang, Robust strategies for mitigating supply chain disruptions, International Journal of Logistics Research and Applications, 9 (2006), 33-45.doi: 10.1080/13675560500405584. |
[112] |
O. Tang, Simulated annealing in lot sizing problems, International Journal of Production Economics, 88 (2004), 173-181.doi: 10.1016/j.ijpe.2003.11.006. |
[113] |
L. C. Tang and L. H. Lee, A simple recovery strategy for economic lot scheduling problem: A two-product case, International Journal of Production Economics, 98 (2005), 97-107.doi: 10.1016/j.ijpe.2004.10.003. |
[114] |
B. Tomlin, On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks, Management Science, 52 (2006), 639-657.doi: 10.1287/mnsc.1060.0515. |
[115] |
P. K. Tripathy, W. M. Wee and P. R. Majhi, An EOQ model with process reliability considerations, Journal of Operational Research Society, 54 (2003), 549-554.doi: 10.1057/palgrave.jors.2601540. |
[116] |
P. K. Tripathy and M. Pattnaik, Optimal inventory policy with reliability consideration and instantaneous receipt under imperfect production process, International Journal of Management Science and Engineering Management, 6 (2011), 413-420. |
[117] |
G. Tuncel and G. Alpan, Risk assessment and management for supply chain networks: A case study, Computers in Industry, 61 (2010), 250-259.doi: 10.1016/j.compind.2009.09.008. |
[118] |
A. Unnikrishnan and M. Figliozzi, Online Freight Network Assignment Model with Transportation Disruptions and Recourse, Transportation Research Record: Journal of the Transportation Research Board, 2224 (2011), 17-25.doi: 10.3141/2224-03. |
[119] |
H. J. Weiss and E. C. Rosenthal, Optimal ordering policies when anticipating a disruption in supply or demand, European Journal of Operational Research, 59 (1992), 370-382.doi: 10.1016/0377-2217(92)90194-E. |
[120] |
G. A. Widyadana and H. M. Wee, Optimal deteriorating items production inventory models with random machine breakdown and stochastic repair time, Applied Mathematical Modelling, 35 (2011), 3495-3508.doi: 10.1016/j.apm.2011.01.006. |
[121] |
A. Wieland and C. M. Wallenburg, Dealing with supply chain risks: Linking risk management practices and strategies to performance, International Journal of Physical Distribution and Logistics Management, 42 (2012), 887-905. |
[122] |
M. C. Wilson, The impact of transportation disruptions on supply chain performance, Transportation Research Part E: Logistics and Transportation Review, 43 (2007), 295-320.doi: 10.1016/j.tre.2005.09.008. |
[123] |
T. Wu, J. Blackhurst and P. O'grady, Methodology for supply chain disruption analysis, International Journal of Production Research, 45 (2007), 1665-1682.doi: 10.1080/00207540500362138. |
[124] |
T. Wu, S. Huang, J. Blackhurst, X. Zhang and S. Wang, Supply chain risk management: An agent-based simulation to study the impact of retail stockouts, IEEE Transactions on Engineering Management, 60 (2013), 676-686.doi: 10.1109/TEM.2012.2190986. |
[125] |
D. Wu and D. L. Olson, Supply chain risk, simulation, and vendor selection, International Journal of Production Economics, 114 (2008), 646-655.doi: 10.1016/j.ijpe.2008.02.013. |
[126] |
A. Xanthopoulos, D. Vlachos and E. Iakovou, Optimal newsvendor policies for dual-sourcing supply chains: A disruption risk management framework, Computers and Operations Research, 39 (2012), 350-357.doi: 10.1016/j.cor.2011.04.010. |
[127] |
Y. Xia, M. H. Yang, B. Golany, S. M. Gilbert and G. Yu, Real-time disruption management in a two-stage production and inventory system, IIE Transactions, 36 (2004), 111-125.doi: 10.1080/07408170490245379. |
[128] |
T. Xiao, X. Qi and G. Yu, Coordination of supply chain after demand disruptions when retailers compete, International Journal of Production Economics, 109 (2007), 162-179.doi: 10.1016/j.ijpe.2006.11.013. |
[129] |
T. Xiao and G. Yu, Supply chain disruption management and evolutionarily stable strategies of retailers in the quantity-setting duopoly situation with homogeneous goods, European Journal of Operational Research, 173 (2006), 648-668.doi: 10.1016/j.ejor.2005.02.076. |
[130] |
T. Xiao, G. Yu, Z. Sheng and Y. Xia, Coordination of a supply chain with one-manufacturer and two-retailers under demand, Annals of Operations Research, 135 (2005), 87-109.doi: 10.1007/s10479-005-6236-6. |
[131] |
X. Yan, M. Zhang, K. Liu and Y. Wang, Optimal ordering policies and sourcing strategies with supply disruption, Journal of Industrial and Management Optimization, 10 (2014), 1147-1168.doi: 10.3934/jimo.2014.10.1147. |
[132] |
Z. Yang, G. Aydin, V. Babich and D. R. Beil, Supply disruptions, asymmetric information, and a backup production option, Management Science, 55 (2009), 192-209. |
[133] |
M. F. Yang and Y. Lin, Applying the linear particle swarm optimization to a serial multi-echelon inventory model, Expert Systems with Applications, 37 (2010), 2599-2608.doi: 10.1016/j.eswa.2009.08.021. |
[134] |
J. Yang, X. Qi and G. Yu, Disruption management in production planning, Naval Research Logistics, 52 (2005), 420-442.doi: 10.1002/nav.20087. |
[135] |
G. Yu and X. Qi, Disruption Management, World Scientific, Singapore, 2004.doi: 10.1142/9789812561701. |
[136] |
H. Yu, A. Z. Zeng and L. Zhao, Single or dual sourcing: Decision-making in the presence of supply chain disruption risks, Omega, 37 (2009), 788-800.doi: 10.1016/j.omega.2008.05.006. |
[137] |
S. H. Zegordi and H. Davarzani, Developing a supply chain disruption analysis model: Application of colored Petri-nets, Expert Systems with Applications, 39 (2012), 2102-2111.doi: 10.1016/j.eswa.2011.07.137. |
[138] |
F. Zeynep Sargut and L. Qi, Analysis of a two-party supply chain with random disruptions, Operations Research Letter, 40 (2012), 114-122.doi: 10.1016/j.orl.2011.11.006. |
[139] |
Z. Zhang and M. A. Figliozzi, A survey of China's logistics industry and the impacts of transport delays on importers and exporters, Transport Reviews, 30 (2009), 179-194.doi: 10.1080/01441640902843232. |
[140] |
D. Zhang, Z. Sheng, J. Du and S. Jin, A study of emergency management of supply chain under supply disruption, Neural Computing and Applications, 24 (2013), 13-20.doi: 10.1007/s00521-013-1511-y. |