July  2016, 12(3): 1153-1172. doi: 10.3934/jimo.2016.12.1153

Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money

1. 

Research and Development Centre, Bharathiar University, Coimbatore-641 046, Tamilnadu, India

2. 

RVS Technical Campus-Coimbatore, Coimbatore-641402, Tamilnadu, India

3. 

CSIR Emeritus Scientist in Mathematics, Government Arts College, Coimbatore, Tamilnadu, India

Received  October 2014 Revised  May 2015 Published  September 2015

This paper presents production-inventory model for deteriorating items with constant demand under the effect of inflation and time-value of money. Models are developed without shortages while using two production cost functions. In the first case, production cost is divided into two parts: an initial cost which occurs at the beginning of each cycle and is applied to the entire quantity produced during the cycle and a running cost that is incurred as production progresses and is applied to the initial units produced. In the second case, the production cost is incurred at the beginning of the cycle. Numerical examples are given to illustrate the theoretical results and made the sensitivity analysis of parameters on the optimal solutions. The validation of this model's result was coded in Microsoft Visual Basic 6.0
Citation: Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153
References:
[1]

J. A. Buzacott, Economic order quantities with inflation,, Operational Research, 26 (1979), 553.   Google Scholar

[2]

C.-Y. Dye, H.-J. Chang and C.-H. Wu, Purchase-inventory decision models for deteriorating items with a temporary sale price,, Internat. J. Inform. Management Sci., 18 (2007), 17.   Google Scholar

[3]

S. Eilon and R. V. Mallaya, Issuing and pricing policy of semi-perishables,, in Proceedings of the 4th International Conference on Operational Research, (1966).   Google Scholar

[4]

P. M. Ghare and G. F. Schrader, A model for exponentially decaying inventory,, J. Indust. Eng., 14 (1963), 238.   Google Scholar

[5]

J. Min, et al., An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments,, Internat. J. Systems Sci., 43 (2012), 1039.  doi: 10.1080/00207721.2012.659685.  Google Scholar

[6]

I. Moon and S. Lee, The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle,, European J. Oper. Res., 125 (2000), 588.  doi: 10.1016/S0377-2217(99)00270-2.  Google Scholar

[7]

G. Moslehi, M. Rasti Barzoki and M. Fathollah Bayati, The effect of inflation and time value of money on lot sizing by considering of rework in an inventory control model,, Internat. J. Indust. Eng. Prod. Man., 22 (2011), 181.   Google Scholar

[8]

A. Roy and G. P. Samanta, Inventory model with two rates of production for deteriorating items with permissible delay in payments,, Internat. J. Systems Sci., 42 (2011), 1375.  doi: 10.1080/00207721003646256.  Google Scholar

[9]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Appl. Math. Comput., 217 (2011), 6159.  doi: 10.1016/j.amc.2010.12.098.  Google Scholar

[10]

N. H. Shah, Inventory model for deteriorating items and time value of money for a finite time horizon under the permissible delay in payments,, Internat. J. Systems Sci., 37 (2006), 9.  doi: 10.1080/00207720500404334.  Google Scholar

[11]

S. R. Singh and R. Jain, On reserve money for an EOQ model in an inflationary environment under supplier credit,, OPSEARCH, 46 (2009), 303.  doi: 10.1007/s12597-009-0020-3.  Google Scholar

[12]

S. Singh, R. Dube and S. R. Singh, Production model with selling price dependent demand and partially backlogging under inflation,, Internat. J. Math. Mod. Comput., 1 (2011), 1.   Google Scholar

[13]

H.-M. Wee, Economic production lot size model for deteriorating items with partial back ordering,, Comp. Indust. Eng., 24 (1993), 449.  doi: 10.1016/0360-8352(93)90040-5.  Google Scholar

[14]

H.-M. Wee and S.-T. Law, Economic production lot size for deteriorating items taking account of the time value of money,, Comp. Oper. Res., 26 (1999), 545.  doi: 10.1016/S0305-0548(98)00078-1.  Google Scholar

[15]

J. C. P. Yu, et al., The effects of inflation and time value of money on a production model with a random product life cycle,, Asia-Pac. J. Oper. Res., 27 (2010), 437.  doi: 10.1142/S0217595910002788.  Google Scholar

show all references

References:
[1]

J. A. Buzacott, Economic order quantities with inflation,, Operational Research, 26 (1979), 553.   Google Scholar

[2]

C.-Y. Dye, H.-J. Chang and C.-H. Wu, Purchase-inventory decision models for deteriorating items with a temporary sale price,, Internat. J. Inform. Management Sci., 18 (2007), 17.   Google Scholar

[3]

S. Eilon and R. V. Mallaya, Issuing and pricing policy of semi-perishables,, in Proceedings of the 4th International Conference on Operational Research, (1966).   Google Scholar

[4]

P. M. Ghare and G. F. Schrader, A model for exponentially decaying inventory,, J. Indust. Eng., 14 (1963), 238.   Google Scholar

[5]

J. Min, et al., An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments,, Internat. J. Systems Sci., 43 (2012), 1039.  doi: 10.1080/00207721.2012.659685.  Google Scholar

[6]

I. Moon and S. Lee, The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle,, European J. Oper. Res., 125 (2000), 588.  doi: 10.1016/S0377-2217(99)00270-2.  Google Scholar

[7]

G. Moslehi, M. Rasti Barzoki and M. Fathollah Bayati, The effect of inflation and time value of money on lot sizing by considering of rework in an inventory control model,, Internat. J. Indust. Eng. Prod. Man., 22 (2011), 181.   Google Scholar

[8]

A. Roy and G. P. Samanta, Inventory model with two rates of production for deteriorating items with permissible delay in payments,, Internat. J. Systems Sci., 42 (2011), 1375.  doi: 10.1080/00207721003646256.  Google Scholar

[9]

B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system,, Appl. Math. Comput., 217 (2011), 6159.  doi: 10.1016/j.amc.2010.12.098.  Google Scholar

[10]

N. H. Shah, Inventory model for deteriorating items and time value of money for a finite time horizon under the permissible delay in payments,, Internat. J. Systems Sci., 37 (2006), 9.  doi: 10.1080/00207720500404334.  Google Scholar

[11]

S. R. Singh and R. Jain, On reserve money for an EOQ model in an inflationary environment under supplier credit,, OPSEARCH, 46 (2009), 303.  doi: 10.1007/s12597-009-0020-3.  Google Scholar

[12]

S. Singh, R. Dube and S. R. Singh, Production model with selling price dependent demand and partially backlogging under inflation,, Internat. J. Math. Mod. Comput., 1 (2011), 1.   Google Scholar

[13]

H.-M. Wee, Economic production lot size model for deteriorating items with partial back ordering,, Comp. Indust. Eng., 24 (1993), 449.  doi: 10.1016/0360-8352(93)90040-5.  Google Scholar

[14]

H.-M. Wee and S.-T. Law, Economic production lot size for deteriorating items taking account of the time value of money,, Comp. Oper. Res., 26 (1999), 545.  doi: 10.1016/S0305-0548(98)00078-1.  Google Scholar

[15]

J. C. P. Yu, et al., The effects of inflation and time value of money on a production model with a random product life cycle,, Asia-Pac. J. Oper. Res., 27 (2010), 437.  doi: 10.1142/S0217595910002788.  Google Scholar

[1]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020

[2]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

[3]

Ji-Bo Wang, Mengqi Liu, Na Yin, Ping Ji. Scheduling jobs with controllable processing time, truncated job-dependent learning and deterioration effects. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1025-1039. doi: 10.3934/jimo.2016060

[4]

Biswajit Sarkar, Bimal Kumar Sett, Sumon Sarkar. Optimal production run time and inspection errors in an imperfect production system with warranty. Journal of Industrial & Management Optimization, 2018, 14 (1) : 267-282. doi: 10.3934/jimo.2017046

[5]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[6]

Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control & Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291

[7]

Simone Göttlich, Stephan Martin, Thorsten Sickenberger. Time-continuous production networks with random breakdowns. Networks & Heterogeneous Media, 2011, 6 (4) : 695-714. doi: 10.3934/nhm.2011.6.695

[8]

Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 1-19. doi: 10.3934/dcdss.2018001

[9]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[10]

Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066

[11]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

[12]

E.V. Presnov, Z. Agur. The Role Of Time Delays, Slow Processes And Chaos In Modulating The Cell-Cycle Clock. Mathematical Biosciences & Engineering, 2005, 2 (3) : 625-642. doi: 10.3934/mbe.2005.2.625

[13]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[14]

Lizhao Yan, Fei Xu, Yongzeng Lai, Mingyong Lai. Stability strategies of manufacturing-inventory systems with unknown time-varying demand. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2033-2047. doi: 10.3934/jimo.2017030

[15]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[16]

Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299

[17]

Kar Hung Wong, Yu Chung Eugene Lee, Heung Wing Joseph Lee, Chi Kin Chan. Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels. Journal of Industrial & Management Optimization, 2018, 14 (3) : 877-894. doi: 10.3934/jimo.2017080

[18]

Chongyang Liu, Meijia Han. Time-delay optimal control of a fed-batch production involving multiple feeds. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020099

[19]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure & Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

[20]

Hua-Ping Wu, Min Huang, W. H. Ip, Qun-Lin Fan. Algorithms for single-machine scheduling problem with deterioration depending on a novel model. Journal of Industrial & Management Optimization, 2017, 13 (2) : 681-695. doi: 10.3934/jimo.2016040

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]