Citation: |
[1] |
R. K. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993. |
[2] |
R. J. Anderson and J. C. Setubal, Goldberg's algorithm for maximum flow in perspective: A computatioinal study, in Network flows and matching: First DIMACS implementation challenge (eds. D. S. Johnson and C. McGeoch), 12, American Mathematical Society, (1993), 1-17. |
[3] |
U. Bahceci and O. Feyzioglu, A network simplex based algorithm for the minimum cost proportional flow problem with disconnected subnetworks, Optimization Letters, 6 (2012), 1173-1184.doi: 10.1007/s11590-011-0356-5. |
[4] |
M. D. Chang, C. H. J. Chen and M. Engquist, An improved primal simplex variant for pure processing networks, ACM Transactions on Mathematical Software, 15 (1989), 64-78.doi: 10.1145/62038.62041. |
[5] |
C. H. J. Chen and M. Engquist, A primal simplex approach to pure processing networks, Management Science, 32 (1986), 1582-1598.doi: 10.1287/mnsc.32.12.1582. |
[6] |
B. V. Cherkassky and A. V. Goldberg, On implementing push-relabel method for the maximum flow problem, Algorithmica, 19 (1997), 390-410.doi: 10.1007/PL00009180. |
[7] |
B. T. Denton, J. Forrest and R. J. Milne, Ibm solves a mixed-integer program to optimize its semiconductor supplychain, Interfaces, 36 (2006), 386-399. |
[8] |
S. C. Fang and L. Qi, Manufacturing network flows: A generalized network flow model for manufacturingprocess modeling, Optimization Methods and Software, 18 (2003), 143-165.doi: 10.1080/1055678031000152079. |
[9] |
D. Goldfarb and M. D. Grigoriadis, A computational comparison of the dinic and network simplex methods formaximum flow, Annals of Operations Research, 13 (1988), 83-123.doi: 10.1007/BF02288321. |
[10] |
D. Klingman, A. Napier and J. Stutz, Netgen: A program for generating large scale capacitated assignment, transportation and minimum cost flow networks, Management Science, 20 (1974), 814-820. |
[11] |
J. Koene, Minimal Cost Flow in Processing Networks, a Primal Approach, PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1983. |
[12] |
L.-C. Kung and C.-C. Chern, Heuristic factory planning algorithm for advanced planning and scheduling, Computers and Operations Research, 36 (2009), 2513-2530.doi: 10.1016/j.cor.2008.09.013. |
[13] |
Y.-K. Lin, C.-T. Yeh and C.-F. Huang, Reliability evaluation of a stochastic-flow distribution network with delivery spoilage, Computers and Industrial Engineering, 66 (2013), 352-359.doi: 10.1016/j.cie.2013.06.019. |
[14] |
H. Lu, E. Yao and L. Qi, Some further results on minimum distribution cost flow problems, Journal of Combinatorial Optimization, 11 (2006), 351-371. |
[15] |
P. Lyon, R. J. Milne, R. Orzell and R. Rice, Matching assets with demand in supply-chain management at ibm microelectronics, Interfaces, 31 (2001), 108-124.doi: 10.1287/inte.31.1.108.9693. |
[16] |
R. L. Sheu, M. J. Ting and I. L. Wang, Maximum flow problem in the distribution network, Journal of Industrial and Management Optimization, 2 (2006), 237-254.doi: 10.3934/jimo.2006.2.237. |
[17] |
J. Shu, M. Chou, Q. Liu, C.-P. Teo and I.-L. Wang, Models for effective deployment and redistribution of bicycles within public bicycle-sharing systems, Operations, 61 (2013), 1346-1359.doi: 10.1287/opre.2013.1215. |
[18] |
I. L. Wang and S. J. Lin, A network simplex algorithm for solving the minimum distribution cost problem, Journal of Industrial and Management Optimization, 5 (2009), 929-950.doi: 10.3934/jimo.2009.5.929. |
[19] |
I. L. Wang and Y. H. Yang, On solving the uncapacitated minimum cost flow problems in a distribution network, International Journal of Reliability and Quality Performance, 1 (2009), 53-63. |