Advanced Search
Article Contents
Article Contents

Nonsingular $H$-tensor and its criteria

Abstract Related Papers Cited by
  • $H$-tensor is a new developed concept in tensor analysis and it is an extension of $H$-matrix and $M$-tensor. Based on the spectral theory of nonnegative tensors, several equivalent conditions of nonsingular $H$-tensors are established in the literature. However, these conditions can not be used as a criteria to identify nonsingular $H$-tensors as they are hard to verify. In this paper, based on the diagonal product dominance and $S$ diagonal product dominance of a tensor, we establish some new implementable criteria in identifying nonsingular $H$-tensors. The positive definiteness of nonsingular $H$-tensors with positive diagonal entries is also discussed in this paper. The obtained results extend the corresponding conclusions for nonsingular $H$-matrices and improve the existing results for nonsingular $H$-tensors.
    Mathematics Subject Classification: 15A69, 12E05, 12E10, 65F10.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl., 433 (2010), 1851-1872.doi: 10.1016/j.laa.2010.06.046.


    K. C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Science, 6 (2008), 507-520.doi: 10.4310/CMS.2008.v6.n2.a12.


    H. B. Chen and L. Q. Qi, Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors, J. Industrial and Management Optim., 11 (2015), 1263-1274.doi: 10.3934/jimo.2015.11.1263.


    A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations, John Wiley & Sons, Ltd, 2009.doi: 10.1002/9780470747278.


    L. Cvetkovic, V. Kostic and R. S. Varga, A new Geršgorin-type eigenvalue inclusion set, Elec. Trans. Numer. Anal., 18 (2004), 73-80.


    L. Cvetkovic and V. Kostic, New criteria for identifying $H$-matrices, J Comput. Appl. Math., 180 (2005), 265-278.doi: 10.1016/j.cam.2004.10.017.


    L. De Lathauwer, B. De Moor and J. Vandewalle, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), 1253-1278.doi: 10.1137/S0895479896305696.


    W. Y. Ding, L. Q. Qi and Y. M. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.doi: 10.1016/j.laa.2013.08.038.


    S. Gandy, B. Recht and I. Yamada, Tensor completion and low-$n$-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19pp.doi: 10.1088/0266-5611/27/2/025010.


    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.doi: 10.1017/CBO9780511810817.


    S. L. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Combination Optim., 24 (2012), 564-579.doi: 10.1007/s10878-011-9407-1.


    S. L. Hu, Z. H. Huang, C. Ling and L. Q. Qi, On determinants and eigenvalue theory of tensors, J. Symbolic Comput., 50 (2013), 508-531.doi: 10.1016/j.jsc.2012.10.001.


    S. L. Hu and L. Q. Qi, Algebraic connectivity of an even uniform hypergraph, J. Combinatorial Optim., 24 (2012), 564-579.doi: 10.1007/s10878-011-9407-1.


    M. R. Kannan, N. Shaked-Monderer and A. Berman, Some properties of strong H-tensors and general H-tensors, Linear Algebra Appl., 476 (2015), 42-55.doi: 10.1016/j.laa.2015.02.034.


    E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.doi: 10.1137/S0895479801387413.


    T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500.doi: 10.1137/07070111X.


    T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenvalues, SIAM J. Matrix Anal. Appl, 32 (2011), 1095-1124.doi: 10.1137/100801482.


    C. Q. Li, F. Wang, J. X. Zhao, Y. Zhu and Y. T. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14.doi: 10.1016/j.cam.2013.04.022.


    Y. Y. Liu and F. H. Shang, An efficient matrix factorization method for tensor completion, IEEE Signal Processing Letters, 20 (2013), 307-310.doi: 10.1109/LSP.2013.2245416.


    L. H. Lim, Singular value and and eigenvalue of tensors, a variational approach, in CAMSAP'05: Proceeding of the IEEE International Workshop on Computational Advances in multiSensor Adaptive Processing, 2005, 129-132.


    J. Liu, P. Musialski, P. Wonka and J. P. Ye, Tensor completion for estimating missing values in visual data, IEEE Trans. on Pattern Anal. Machine Intelligence, 35 (2013), 208-220.


    M. Moakher, On the averaging of symmetric positive-definite tensors, J. Elasticity, 82 (2006), 273-296.doi: 10.1007/s10659-005-9035-z.


    M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.doi: 10.1137/09074838X.


    Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. on Auto. Control, 53 (2008), 1096-1107.doi: 10.1109/TAC.2008.923679.


    C. L. Nikias and J. M. Mendel, Signal processing with higher-order spectra, IEEE Signal Processing Magazine, 10 (1993), 10-37.doi: 10.1109/79.221324.


    L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic Comput., 54 (2013), 9-35.doi: 10.1016/j.jsc.2012.11.005.


    A. M. Ostrowski, Über die Determinaanten mit überwiegender Hauptdiagonale, Comment Math. Helv., 10 (1937), 69-96.doi: 10.1007/BF01214284.


    L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.doi: 10.1016/j.jsc.2005.05.007.


    L. Qi, J. Y. Shao and Q. Wang, Regular uniform hypergraphs, $s$-cycles, $s$-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl., 443 (2014), 215-227.doi: 10.1016/j.laa.2013.11.008.


    L. Qi, C. Xu and Y. Xu, Nonnegative tensor factorization, completely positive tensors and an Hierarchically elimination algorithm, SIAM J. Matrix Anal. Appl., 35 (2014), 1227-1241.doi: 10.1137/13092232X.


    Y. S. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear and Multilinear Algebra, 63 (2015), 120-131.doi: 10.1080/03081087.2013.851198.


    Y. Song and L. Q. Qi, Infinite and finite dimensional Hilbert tensors, Linear Algebra Appl., 451 (2014), 1-14.doi: 10.1016/j.laa.2014.03.023.


    Y. S. Song and L. Q. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.doi: 10.1007/s10957-014-0616-5.


    Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530.doi: 10.1137/090778766.


    P. Yuan and L. You, Some remarks on $P,P_0, B$ and $B_0$ tensors, Linear Algebra Appl., 459 (2014), 511-521.doi: 10.1016/j.laa.2014.07.043.


    L. P. Zhang, L. Q. Qi and G. L. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.doi: 10.1137/130915339.


    X. Z. Zhang, C. Ling and L. Qi, The best rank-1 approximation of a symmetric tensor and related spherical optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), 806-821.doi: 10.1137/110835335.

  • 加载中

Article Metrics

HTML views() PDF downloads(267) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint