October  2016, 12(4): 1187-1197. doi: 10.3934/jimo.2016.12.1187

Semidefinite programming via image space analysis

1. 

College of Economics and Business Administration, Chongqing University, Chongqing 400044, China

Received  January 2015 Revised  April 2015 Published  January 2016

In this paper, we investigate semidefinite programming by using the image space analysis and present some equivalence between the (regular) linear separation and the saddle points of the Lagrangian functions related to semidefinite programming. Some necessary and sufficient optimality conditions for semidefinite programming are also given under some suitable assumptions. As an application, we obtain some equivalent characterizations for necessary and sufficient optimality conditions for linear semidefinite programming under Slater assumption.
Citation: Shouhong Yang. Semidefinite programming via image space analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1187-1197. doi: 10.3934/jimo.2016.12.1187
References:
[1]

P. H. Dien, G. Mastroeni, M. Pappalardo and P. H. Quang, Regularity conditions for constrained extremum problems via image space,, J. Optim. Theory Appl., 80 (1994), 19. doi: 10.1007/BF02196591. Google Scholar

[2]

F. Giannessi, Theorems of the alternative and optimality conditions,, J. Optim. Theory Appl., 42 (1984), 331. doi: 10.1007/BF00935321. Google Scholar

[3]

F. Giannessi, Constrained Optimization and Image Space Analysis,, Springer, (2005). Google Scholar

[4]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality,, J. Global Optim., 42 (2008), 401. doi: 10.1007/s10898-008-9301-2. Google Scholar

[5]

C. Helmberg, Semidefinite programming,, European J. Oper. Res., 137 (2002), 461. doi: 10.1016/S0377-2217(01)00143-6. Google Scholar

[6]

J. Li and N. J. Huang, Image space analysis for vector variational inequalities with matrix inequality constraints and applications,, J. Optim. Theory Appl., 145 (2010), 459. doi: 10.1007/s10957-010-9691-4. Google Scholar

[7]

J. Li and N. J. Huang, Image space analysis for variational inequalities with cone constraints and applications to traffic equilibria,, Sci. China Math., 55 (2012), 851. doi: 10.1007/s11425-011-4287-5. Google Scholar

[8]

D. T. Luc, Theory of Vector Optimization,, Springer Verlag, (1989). Google Scholar

[9]

Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming,, SIAM Studies in Applied Mathematics, (1994). doi: 10.1137/1.9781611970791. Google Scholar

[10]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970). Google Scholar

[11]

A. Shapiro and K. Scheinberg, Duality and optimality conditions,, in Handbook of Semidefinite Programming: Theory, (2000), 67. doi: 10.1007/978-1-4615-4381-7_4. Google Scholar

[12]

L. Vandenberghe and S. Boyd, Semidefinite programming,, SIAM Rev., 38 (1996), 49. doi: 10.1137/1038003. Google Scholar

[13]

G. Wanka, R. I. Boţ and S. M. Grad, Multiobjective duality for convex semidefinite programming problems,, Z. Anal. Anwendungen, 22 (2003), 711. doi: 10.4171/ZAA/1169. Google Scholar

[14]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part I: Image space analysis,, J. Optim. Theory Appl., 161 (2014), 738. doi: 10.1007/s10957-013-0468-4. Google Scholar

[15]

J. Zowe and M. Kočvara, Semidefinite programming,, in Modern Optimization and its Applications in Engineering (eds. A. Ben-Tal and A. Nemirovski), (2000). Google Scholar

show all references

References:
[1]

P. H. Dien, G. Mastroeni, M. Pappalardo and P. H. Quang, Regularity conditions for constrained extremum problems via image space,, J. Optim. Theory Appl., 80 (1994), 19. doi: 10.1007/BF02196591. Google Scholar

[2]

F. Giannessi, Theorems of the alternative and optimality conditions,, J. Optim. Theory Appl., 42 (1984), 331. doi: 10.1007/BF00935321. Google Scholar

[3]

F. Giannessi, Constrained Optimization and Image Space Analysis,, Springer, (2005). Google Scholar

[4]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality,, J. Global Optim., 42 (2008), 401. doi: 10.1007/s10898-008-9301-2. Google Scholar

[5]

C. Helmberg, Semidefinite programming,, European J. Oper. Res., 137 (2002), 461. doi: 10.1016/S0377-2217(01)00143-6. Google Scholar

[6]

J. Li and N. J. Huang, Image space analysis for vector variational inequalities with matrix inequality constraints and applications,, J. Optim. Theory Appl., 145 (2010), 459. doi: 10.1007/s10957-010-9691-4. Google Scholar

[7]

J. Li and N. J. Huang, Image space analysis for variational inequalities with cone constraints and applications to traffic equilibria,, Sci. China Math., 55 (2012), 851. doi: 10.1007/s11425-011-4287-5. Google Scholar

[8]

D. T. Luc, Theory of Vector Optimization,, Springer Verlag, (1989). Google Scholar

[9]

Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming,, SIAM Studies in Applied Mathematics, (1994). doi: 10.1137/1.9781611970791. Google Scholar

[10]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1970). Google Scholar

[11]

A. Shapiro and K. Scheinberg, Duality and optimality conditions,, in Handbook of Semidefinite Programming: Theory, (2000), 67. doi: 10.1007/978-1-4615-4381-7_4. Google Scholar

[12]

L. Vandenberghe and S. Boyd, Semidefinite programming,, SIAM Rev., 38 (1996), 49. doi: 10.1137/1038003. Google Scholar

[13]

G. Wanka, R. I. Boţ and S. M. Grad, Multiobjective duality for convex semidefinite programming problems,, Z. Anal. Anwendungen, 22 (2003), 711. doi: 10.4171/ZAA/1169. Google Scholar

[14]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part I: Image space analysis,, J. Optim. Theory Appl., 161 (2014), 738. doi: 10.1007/s10957-013-0468-4. Google Scholar

[15]

J. Zowe and M. Kočvara, Semidefinite programming,, in Modern Optimization and its Applications in Engineering (eds. A. Ben-Tal and A. Nemirovski), (2000). Google Scholar

[1]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial & Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[2]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018174

[3]

Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185

[4]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[5]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[6]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[7]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[8]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[9]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[10]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[11]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[12]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[13]

Bernard Dacorogna. Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 257-263. doi: 10.3934/dcdsb.2001.1.257

[14]

Zuohuan Zheng, Jing Xia, Zhiming Zheng. Necessary and sufficient conditions for semi-uniform ergodic theorems and their applications. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 409-417. doi: 10.3934/dcds.2006.14.409

[15]

Ana Cristina Barroso, José Matias. Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 97-114. doi: 10.3934/dcds.2005.12.97

[16]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[17]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[18]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[19]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[20]

Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]