October  2016, 12(4): 1199-1214. doi: 10.3934/jimo.2016.12.1199

Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging

1. 

Department of Applied Mathematics, Andhra University, Visakhapatnam - 530 003, India, India, India

Received  October 2014 Revised  April 2015 Published  January 2016

This paper analyzes a finite buffer multiple working vacations queue with balking, reneging and Bernoulli schedule vacation interruption. Arriving customers decide either to join the system or to balk. After joining the queue the customers may renege based on their desire for service or their unwillingness for waiting. At a service completion instant during working vacations, the server can decide either to continue the vacation with probability $q$ or interrupt the vacation and resume regular service period with probability $1-q$. The inter-arrival times of customers are assumed to be arbitrarily distributed. Service times during a regular service period, during a working vacation period and vacation times are assumed to be exponentially distributed. Using recursive technique, the steady state system length distributions at various epochs are obtained. Some performance measures of the model and cost analysis using ant colony optimization are presented. Finally, numerical results showing the effect of model parameters on key performance measures are presented.
Citation: Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199
References:
[1]

M. O. Abou-El-Ata and A. I. Shawky, The single-server Markovian overflow queue with balking, reneging and an additional server for longer queues,, Microelectronics and Reliability, 32 (1992), 1389. doi: 10.1016/0026-2714(92)90008-9.

[2]

R. O. Al-Seedy, A. A. El-Sherbiny, S. A. El-Shehawy and S. I. Ammar, Transient solution of the M/M/c queue with balking and reneging,, Computer and Mathematics with Applications, 57 (2009), 1280. doi: 10.1016/j.camwa.2009.01.017.

[3]

S. I. Ammar, A. A. El-Sherbiny, S. A. El-Shehawy and R. O. Al-Seedy, A matrix approach for the transient solution of an M/M/1/N queue with discouraged arrivals and reneging,, International Journal of Computer Mathematics, 89 (2012), 482. doi: 10.1080/00207160.2011.637553.

[4]

C. J. Ancker Jr. and A. V. Gafarian, Some queueing problems with balking and reneging: I,, Operations Research, 11 (1963), 88. doi: 10.1287/opre.11.1.88.

[5]

C. J. Ancker Jr. and A. V. Gafarian, Some queueing problems with balking and reneging: II,, Operations Research, 11 (1963), 928. doi: 10.1287/opre.11.6.928.

[6]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytical analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.

[7]

A. Colorni, M. Dorigo and V. Maniezzo, Distributed optimization by ant colonies,, in Proceedings of ECAL'91 European Conference on Artificial Life, (1991), 134.

[8]

M. Dorigo, V. Maniezzo and A. Colorni, The ant system: Optimization by a colony of cooperating agents,, IEEE Transactions on Systems, 26 (1996), 29. doi: 10.1109/3477.484436.

[9]

V. Goswami, Study of customers' impatience in a GI/M/1/N queue with working vacations,, International Journal of Management Science and Engineering Management, (2015).

[10]

F. A. Haight, Queueing with balking,, Biometrika, 44 (1957), 360. doi: 10.1093/biomet/44.3-4.360.

[11]

F. A. Haight, Queueing with reneging,, Metrika, 2 (1959), 186. doi: 10.1007/BF02613734.

[12]

J. Li and N. Tian, The M/M/1 queue with working vacations and vacation interruption,, Journal of Systems Science and Systems Engineering, 16 (2007), 121. doi: 10.1007/s11518-006-5030-6.

[13]

J. Li, N. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 32 (2008), 2715. doi: 10.1016/j.apm.2007.09.017.

[14]

J. Li, Z. Wang and Z. Liu, The GI/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, Applied Mathematical Modelling, 37 (2013), 3724. doi: 10.1016/j.apm.2012.07.045.

[15]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41. doi: 10.1016/S0166-5316(02)00057-3.

[16]

P. Vijaya Laxmi, V. Goswami and K. Jyothsna, Optimization of balking and reneging queue with vacation interruption under $N$-Policy,, Journal of Optimization, 2013 (2013). doi: 10.1155/2013/683708.

[17]

P. Vijaya Laxmi and K. Jyothsna, Impatient customer queue with Bernoulli schedule vacation interruption,, Computers & Operations Research, 56 (2015), 1. doi: 10.1016/j.cor.2014.08.018.

[18]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895. doi: 10.3934/jimo.2012.8.895.

[19]

H. Zhang and D. Shi, The M/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, International Journal of Information and Management Sciences, 20 (2009), 579.

show all references

References:
[1]

M. O. Abou-El-Ata and A. I. Shawky, The single-server Markovian overflow queue with balking, reneging and an additional server for longer queues,, Microelectronics and Reliability, 32 (1992), 1389. doi: 10.1016/0026-2714(92)90008-9.

[2]

R. O. Al-Seedy, A. A. El-Sherbiny, S. A. El-Shehawy and S. I. Ammar, Transient solution of the M/M/c queue with balking and reneging,, Computer and Mathematics with Applications, 57 (2009), 1280. doi: 10.1016/j.camwa.2009.01.017.

[3]

S. I. Ammar, A. A. El-Sherbiny, S. A. El-Shehawy and R. O. Al-Seedy, A matrix approach for the transient solution of an M/M/1/N queue with discouraged arrivals and reneging,, International Journal of Computer Mathematics, 89 (2012), 482. doi: 10.1080/00207160.2011.637553.

[4]

C. J. Ancker Jr. and A. V. Gafarian, Some queueing problems with balking and reneging: I,, Operations Research, 11 (1963), 88. doi: 10.1287/opre.11.1.88.

[5]

C. J. Ancker Jr. and A. V. Gafarian, Some queueing problems with balking and reneging: II,, Operations Research, 11 (1963), 928. doi: 10.1287/opre.11.6.928.

[6]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytical analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.

[7]

A. Colorni, M. Dorigo and V. Maniezzo, Distributed optimization by ant colonies,, in Proceedings of ECAL'91 European Conference on Artificial Life, (1991), 134.

[8]

M. Dorigo, V. Maniezzo and A. Colorni, The ant system: Optimization by a colony of cooperating agents,, IEEE Transactions on Systems, 26 (1996), 29. doi: 10.1109/3477.484436.

[9]

V. Goswami, Study of customers' impatience in a GI/M/1/N queue with working vacations,, International Journal of Management Science and Engineering Management, (2015).

[10]

F. A. Haight, Queueing with balking,, Biometrika, 44 (1957), 360. doi: 10.1093/biomet/44.3-4.360.

[11]

F. A. Haight, Queueing with reneging,, Metrika, 2 (1959), 186. doi: 10.1007/BF02613734.

[12]

J. Li and N. Tian, The M/M/1 queue with working vacations and vacation interruption,, Journal of Systems Science and Systems Engineering, 16 (2007), 121. doi: 10.1007/s11518-006-5030-6.

[13]

J. Li, N. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 32 (2008), 2715. doi: 10.1016/j.apm.2007.09.017.

[14]

J. Li, Z. Wang and Z. Liu, The GI/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, Applied Mathematical Modelling, 37 (2013), 3724. doi: 10.1016/j.apm.2012.07.045.

[15]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41. doi: 10.1016/S0166-5316(02)00057-3.

[16]

P. Vijaya Laxmi, V. Goswami and K. Jyothsna, Optimization of balking and reneging queue with vacation interruption under $N$-Policy,, Journal of Optimization, 2013 (2013). doi: 10.1155/2013/683708.

[17]

P. Vijaya Laxmi and K. Jyothsna, Impatient customer queue with Bernoulli schedule vacation interruption,, Computers & Operations Research, 56 (2015), 1. doi: 10.1016/j.cor.2014.08.018.

[18]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895. doi: 10.3934/jimo.2012.8.895.

[19]

H. Zhang and D. Shi, The M/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, International Journal of Information and Management Sciences, 20 (2009), 579.

[1]

Gopinath Panda, Veena Goswami, Abhijit Datta Banik, Dibyajyoti Guha. Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption. Journal of Industrial & Management Optimization, 2016, 12 (3) : 851-878. doi: 10.3934/jimo.2016.12.851

[2]

Dequan Yue, Wuyi Yue. A heterogeneous two-server network system with balking and a Bernoulli vacation schedule. Journal of Industrial & Management Optimization, 2010, 6 (3) : 501-516. doi: 10.3934/jimo.2010.6.501

[3]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[4]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[5]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[6]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066

[7]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[8]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[9]

A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for series-parallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial & Management Optimization, 2006, 2 (4) : 467-479. doi: 10.3934/jimo.2006.2.467

[10]

Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial & Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469

[11]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[12]

Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018196

[13]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial & Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[14]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[15]

Tzu-Hsin Liu, Jau-Chuan Ke. On the multi-server machine interference with modified Bernoulli vacation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1191-1208. doi: 10.3934/jimo.2014.10.1191

[16]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[17]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[18]

Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453

[19]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial & Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[20]

Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial & Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

[Back to Top]