• Previous Article
    Circulant tensors with applications to spectral hypergraph theory and stochastic process
  • JIMO Home
  • This Issue
  • Next Article
    Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging
October  2016, 12(4): 1215-1225. doi: 10.3934/jimo.2016.12.1215

Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem

1. 

Business Administration Department, Gulf University for Science and Technology, Kuwait

2. 

Department of Engineering Management and Systems Engineering, Old Dominion University, Norfolk, VA, United States

3. 

Department of Civil Engineering, Lebanese American University, Byblos, Lebanon

Received  March 2014 Revised  October 2015 Published  January 2016

This study proposes a novel methodology towards using ant colony optimization ($ACO$) with stochastic demand. In particular, an optimization-simulation-optimization approach is used to solve the Stochastic uncapacitated location-allocation problem with an unknown number of facilities, and an objective of minimizing the fixed and transportation costs. $ACO$ is modeled using discrete event simulation to capture the randomness of customers' demand, and its objective is to optimize the costs. On the other hand, the simulated $ACO$'s parameters are also optimized to guarantee superior solutions. This approach's performance is evaluated by comparing its solutions to the ones obtained using deterministic data. The results show that simulation was able to identify better facility allocations where the deterministic solutions would have been inadequate due to the real randomness of customers' demands.
Citation: Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215
References:
[1]

I. K. Altinel, K. C. Ozkisacik and N. Aras, Variable neighborhood search heuristics for the probabilistic multi-source weber problem,, Journal of the Operational Research Society, 62 (2011), 1813.   Google Scholar

[2]

N. Aras, M. Orbay and I. K. Altinel, Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem,, Journal of the Operational Research Society, 59 (2008), 64.  doi: 10.1057/palgrave.jors.2602262.  Google Scholar

[3]

J-P. Arnaout, Ant Colony Optimization algorithm for the Euclidean location-allocation problem with unknown number of facilities,, Journal of Intelligent Manufacturing, 24 (2013), 45.  doi: 10.1007/s10845-011-0536-2.  Google Scholar

[4]

M. Bischoff , T. Fleischmann and K. Klamroth, The multi-facility location-allocation problem with polyhedral barriers,, Computers and Operations Research, 36 (2009), 1376.  doi: 10.1016/j.cor.2008.02.014.  Google Scholar

[5]

M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms,, European Journal of Operational Research, 177 (2007), 22.  doi: 10.1016/j.ejor.2005.10.061.  Google Scholar

[6]

J. Brimberg, P. Hansen, N. Mladenovi and E. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem,, Operations Research, 48 (2000), 444.  doi: 10.1287/opre.48.3.444.12431.  Google Scholar

[7]

M. D. H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated location-allocation problem,, Journal of the Operational Research Society, 52 (2001), 821.  doi: 10.1057/palgrave.jors.2601176.  Google Scholar

[8]

M. Jabalameli and A. Ghaderi, Hybrid algorithms for the uncapacitated continuous location-allocation problem,, International Journal of Advanced Manufacturing Technology, 37 (2008), 202.  doi: 10.1007/s00170-007-0944-9.  Google Scholar

[9]

S. Krau, Extensions du Problème de Weber,, Ph.D thesis, (1996).   Google Scholar

[10]

R. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem,, Mathematical Programming, 3 (1972), 193.   Google Scholar

[11]

W. Liu and J. Xu, A study on facility location-allocation problem in mixed environment of randomness and fuzziness,, Journal of Intelligent Manufacturing, 22 (2011), 389.  doi: 10.1007/s10845-009-0297-3.  Google Scholar

[12]

R. Logendran and M. P. Terrell, Uncapacitated plant location-allocation problems with price sensitive stochasticdemands,, Computers and Operations Research, 15 (1988), 189.   Google Scholar

[13]

E. Mehdizadeh, M. Tavarroth and S. Nousavi, Solving the Stochastic Capacitated Location-Allocation Problem by Using a New Hybrid Algorithm,, Proceedings of the 15th WSEAS International Conference on Applied Mathematics, (2010), 27.   Google Scholar

[14]

M. Ohlemuller, Tabu search for large location-allocation problems,, Journal of the Operational Research Society, 48 (1997), 745.   Google Scholar

[15]

S. H. Owen and M. S. Daskin, Strategic facility location: A review,, European Journal of Operational Research, 111 (1998), 423.  doi: 10.1016/S0377-2217(98)00186-6.  Google Scholar

[16]

K. C. Ozkisacik, I. K. Altinel and N. Aras, Solving probabilistic multi-facility Weber problem by vector quantization,, OR Spectrum, 31 (2009), 533.  doi: 10.1007/s00291-008-0157-0.  Google Scholar

[17]

S. Pasandideh and S. Niaki, Genetic application in a facility location problem with random demand within queuing framework,, Journal of Intelligent Manufacturing, (2010).   Google Scholar

[18]

S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous location-allocation problem,, Annals of Operations Research, 123 (2003), 203.  doi: 10.1023/A:1026131531250.  Google Scholar

[19]

E. Weiszfeld, Sur le point par lequel la somme des distances de n Points donnés est Minimum,, Tohoku Mathematical Journal, 43 (1937), 355.   Google Scholar

[20]

J. Zhou and B. Liu, New stochastic models for capacitated location-allocation problem,, Computers and Industrial Engineering, 45 (2003), 111.  doi: 10.1016/S0360-8352(03)00021-4.  Google Scholar

[21]

J. Zhou, Uncapacitated facility layout problem with stochastic demands,, in Proceedings of the Sixth National Conferenceof Operations Research Society of China, (2000), 904.   Google Scholar

show all references

References:
[1]

I. K. Altinel, K. C. Ozkisacik and N. Aras, Variable neighborhood search heuristics for the probabilistic multi-source weber problem,, Journal of the Operational Research Society, 62 (2011), 1813.   Google Scholar

[2]

N. Aras, M. Orbay and I. K. Altinel, Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem,, Journal of the Operational Research Society, 59 (2008), 64.  doi: 10.1057/palgrave.jors.2602262.  Google Scholar

[3]

J-P. Arnaout, Ant Colony Optimization algorithm for the Euclidean location-allocation problem with unknown number of facilities,, Journal of Intelligent Manufacturing, 24 (2013), 45.  doi: 10.1007/s10845-011-0536-2.  Google Scholar

[4]

M. Bischoff , T. Fleischmann and K. Klamroth, The multi-facility location-allocation problem with polyhedral barriers,, Computers and Operations Research, 36 (2009), 1376.  doi: 10.1016/j.cor.2008.02.014.  Google Scholar

[5]

M. Bischoff and K. Klamroth, An efficient solution method for Weber problems with barriers based on genetic algorithms,, European Journal of Operational Research, 177 (2007), 22.  doi: 10.1016/j.ejor.2005.10.061.  Google Scholar

[6]

J. Brimberg, P. Hansen, N. Mladenovi and E. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource weber problem,, Operations Research, 48 (2000), 444.  doi: 10.1287/opre.48.3.444.12431.  Google Scholar

[7]

M. D. H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated location-allocation problem,, Journal of the Operational Research Society, 52 (2001), 821.  doi: 10.1057/palgrave.jors.2601176.  Google Scholar

[8]

M. Jabalameli and A. Ghaderi, Hybrid algorithms for the uncapacitated continuous location-allocation problem,, International Journal of Advanced Manufacturing Technology, 37 (2008), 202.  doi: 10.1007/s00170-007-0944-9.  Google Scholar

[9]

S. Krau, Extensions du Problème de Weber,, Ph.D thesis, (1996).   Google Scholar

[10]

R. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem,, Mathematical Programming, 3 (1972), 193.   Google Scholar

[11]

W. Liu and J. Xu, A study on facility location-allocation problem in mixed environment of randomness and fuzziness,, Journal of Intelligent Manufacturing, 22 (2011), 389.  doi: 10.1007/s10845-009-0297-3.  Google Scholar

[12]

R. Logendran and M. P. Terrell, Uncapacitated plant location-allocation problems with price sensitive stochasticdemands,, Computers and Operations Research, 15 (1988), 189.   Google Scholar

[13]

E. Mehdizadeh, M. Tavarroth and S. Nousavi, Solving the Stochastic Capacitated Location-Allocation Problem by Using a New Hybrid Algorithm,, Proceedings of the 15th WSEAS International Conference on Applied Mathematics, (2010), 27.   Google Scholar

[14]

M. Ohlemuller, Tabu search for large location-allocation problems,, Journal of the Operational Research Society, 48 (1997), 745.   Google Scholar

[15]

S. H. Owen and M. S. Daskin, Strategic facility location: A review,, European Journal of Operational Research, 111 (1998), 423.  doi: 10.1016/S0377-2217(98)00186-6.  Google Scholar

[16]

K. C. Ozkisacik, I. K. Altinel and N. Aras, Solving probabilistic multi-facility Weber problem by vector quantization,, OR Spectrum, 31 (2009), 533.  doi: 10.1007/s00291-008-0157-0.  Google Scholar

[17]

S. Pasandideh and S. Niaki, Genetic application in a facility location problem with random demand within queuing framework,, Journal of Intelligent Manufacturing, (2010).   Google Scholar

[18]

S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous location-allocation problem,, Annals of Operations Research, 123 (2003), 203.  doi: 10.1023/A:1026131531250.  Google Scholar

[19]

E. Weiszfeld, Sur le point par lequel la somme des distances de n Points donnés est Minimum,, Tohoku Mathematical Journal, 43 (1937), 355.   Google Scholar

[20]

J. Zhou and B. Liu, New stochastic models for capacitated location-allocation problem,, Computers and Industrial Engineering, 45 (2003), 111.  doi: 10.1016/S0360-8352(03)00021-4.  Google Scholar

[21]

J. Zhou, Uncapacitated facility layout problem with stochastic demands,, in Proceedings of the Sixth National Conferenceof Operations Research Society of China, (2000), 904.   Google Scholar

[1]

Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020094

[2]

Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020044

[3]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020028

[4]

Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial & Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469

[5]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[6]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066

[7]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[8]

A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for series-parallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial & Management Optimization, 2006, 2 (4) : 467-479. doi: 10.3934/jimo.2006.2.467

[9]

Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks & Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81

[10]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[11]

Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854-863. doi: 10.3934/proc.2011.2011.854

[12]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020205

[13]

Cristina Anton, Jian Deng, Yau Shu Wong, Yile Zhang, Weiping Zhang, Stephan Gabos, Dorothy Yu Huang, Can Jin. Modeling and simulation for toxicity assessment. Mathematical Biosciences & Engineering, 2017, 14 (3) : 581-606. doi: 10.3934/mbe.2017034

[14]

Tao Guan, Denghua Zhong, Bingyu Ren, Pu Cheng. Construction schedule optimization for high arch dams based on real-time interactive simulation. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1321-1342. doi: 10.3934/jimo.2015.11.1321

[15]

C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020356

[16]

Michele L. Joyner, Chelsea R. Ross, Colton Watts, Thomas C. Jones. A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1411-1429. doi: 10.3934/mbe.2014.11.1411

[17]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks & Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[18]

Alexander Blokhin, Alesya Ibragimova. 1D numerical simulation of the mep mathematical model in ballistic diode problem. Kinetic & Related Models, 2009, 2 (1) : 81-107. doi: 10.3934/krm.2009.2.81

[19]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[20]

Ingenuin Gasser, Marcus Kraft. Modelling and simulation of fires in tunnel networks. Networks & Heterogeneous Media, 2008, 3 (4) : 691-707. doi: 10.3934/nhm.2008.3.691

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (4)

[Back to Top]