-
Previous Article
Improved approximating $2$-CatSP for $\sigma\geq 0.50$ with an unbalanced rounding matrix
- JIMO Home
- This Issue
-
Next Article
Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem
Circulant tensors with applications to spectral hypergraph theory and stochastic process
1. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
References:
[1] |
R. Badeau and R. Boyer, Fast multilinear singular value decomposition for structured tensors, SIAM J. Matrix Anal. Appl., 30 (2008), 1008-1021.
doi: 10.1137/060655936. |
[2] |
K. C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422.
doi: 10.1016/j.jmaa.2008.09.067. |
[3] |
Y. Chen, Y. Dai, D. Han and W. Sun, Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming, SIAM J. Imaging Sci., 6 (2013), 1531-1552.
doi: 10.1137/110843526. |
[4] |
J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl., 436 (2012), 3268-3292.
doi: 10.1016/j.laa.2011.11.018. |
[5] | |
[6] |
A. Ducournau and A. Bretto, Random walks in directed hypergraphs and application to semi-supervised image segmentation, Computer Vision and Image Understanding, 120 (2014), 91-102.
doi: 10.1016/j.cviu.2013.10.012. |
[7] |
G. Gallo, G. Longo, S. Pallottino and S. Nguyen, Directed hypergraphs and applications, Discrete Appl. Math., 42 (1993), 177-201.
doi: 10.1016/0166-218X(93)90045-P. |
[8] |
D. Han and X. Yuan, A note on the alternating direction method of multipliers, J. Optim. Theory Appl., 155 (2012), 227-238.
doi: 10.1007/s10957-012-0003-z. |
[9] |
R. Horn and C. Johnson, Matrix Ananlysis, Cambridge University Press, Cambridge, UK, 1990. |
[10] |
S. Hu, Z.-H. Huang, H.-Y. Ni and L. Qi, Positive definiteness of diffusion kurtosis imaging, Inverse Probl. Imaging, 6 (2012), 57-75.
doi: 10.3934/ipi.2012.6.57. |
[11] |
S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24 (2012), 564-579.
doi: 10.1007/s10878-011-9407-1. |
[12] |
S. Hu and L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math., 169 (2014), 140-151.
doi: 10.1016/j.dam.2013.12.024. |
[13] |
S. Hu and L. Qi, The Laplacian of a uniform hypergraph, J. Comb. Optim., 29 (2015), 331-366.
doi: 10.1007/s10878-013-9596-x. |
[14] |
S. Hu, L. Qi and J.-Y. Shao, Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues, Linear Algebra Appl., 439 (2013), 2980-2998.
doi: 10.1016/j.laa.2013.08.028. |
[15] |
B. Jiang, S. Ma and S. Zhang, Alternating direction method of multipliers for real and complex polynomial optimization models, Optimization, 63 (2014), 883-898.
doi: 10.1080/02331934.2014.895901. |
[16] |
G. Li, L. Qi and G. Yu, The $Z$-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., 20 (2013), 1001-1029.
doi: 10.1002/nla.1877. |
[17] |
K. Li and L. Wang, A polynomial time approximation scheme for embedding a directed hypergraph on a ring, Inform. Process. Lett., 97 (2006), 203-207.
doi: 10.1016/j.ipl.2005.10.008. |
[18] |
H. Z. Luo, H. X. Wu and G. T. Chen, On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming, J. Global Optim., 54 (2012), 599-618.
doi: 10.1007/s10898-011-9779-x. |
[19] |
K. J. Pearson and T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30 (2014), 1233-1248.
doi: 10.1007/s00373-013-1340-x. |
[20] |
J. M. Peña, A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027-1037 (electronic).
doi: 10.1137/S0895479800370342. |
[21] |
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[22] |
L. Qi, $H^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[23] |
L. Qi, J.-Y. Shao and Q. Wang, Regular uniform hypergraphs, $s$-cycles, $s$-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl., 443 (2014), 215-227.
doi: 10.1016/j.laa.2013.11.008. |
[24] |
L. Qi and Y. Song, An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312.
doi: 10.1016/j.laa.2014.05.026. |
[25] |
L. Qi, G. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138. |
[26] |
L. Qi, G. Yu and Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vision, 45 (2013), 103-113.
doi: 10.1007/s10851-012-0346-y. |
[27] |
M. Rezghi and L. Eldén, Diagonalization of tensors with circulant structure, Linear Algebra Appl., 435 (2011), 422-447.
doi: 10.1016/j.laa.2010.03.032. |
[28] |
H. Tijms, A First Course in Stochastic Models, John Wiley, New York, 2003.
doi: 10.1002/047001363X. |
[29] |
Wikipedia, Circulant matrix - wikipedia, the free encyclopedia, 2015,, , ().
|
[30] |
J. Xie and A. Chang, H-eigenvalues of signless Laplacian tensor for an even uniform hypergraph, Front. Math. China, 8 (2013), 107-127.
doi: 10.1007/s11464-012-0266-6. |
[31] |
J. Xie and A. Chang, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra Appl., 20 (2013), 1030-1045.
doi: 10.1002/nla.1910. |
show all references
References:
[1] |
R. Badeau and R. Boyer, Fast multilinear singular value decomposition for structured tensors, SIAM J. Matrix Anal. Appl., 30 (2008), 1008-1021.
doi: 10.1137/060655936. |
[2] |
K. C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422.
doi: 10.1016/j.jmaa.2008.09.067. |
[3] |
Y. Chen, Y. Dai, D. Han and W. Sun, Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming, SIAM J. Imaging Sci., 6 (2013), 1531-1552.
doi: 10.1137/110843526. |
[4] |
J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl., 436 (2012), 3268-3292.
doi: 10.1016/j.laa.2011.11.018. |
[5] | |
[6] |
A. Ducournau and A. Bretto, Random walks in directed hypergraphs and application to semi-supervised image segmentation, Computer Vision and Image Understanding, 120 (2014), 91-102.
doi: 10.1016/j.cviu.2013.10.012. |
[7] |
G. Gallo, G. Longo, S. Pallottino and S. Nguyen, Directed hypergraphs and applications, Discrete Appl. Math., 42 (1993), 177-201.
doi: 10.1016/0166-218X(93)90045-P. |
[8] |
D. Han and X. Yuan, A note on the alternating direction method of multipliers, J. Optim. Theory Appl., 155 (2012), 227-238.
doi: 10.1007/s10957-012-0003-z. |
[9] |
R. Horn and C. Johnson, Matrix Ananlysis, Cambridge University Press, Cambridge, UK, 1990. |
[10] |
S. Hu, Z.-H. Huang, H.-Y. Ni and L. Qi, Positive definiteness of diffusion kurtosis imaging, Inverse Probl. Imaging, 6 (2012), 57-75.
doi: 10.3934/ipi.2012.6.57. |
[11] |
S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24 (2012), 564-579.
doi: 10.1007/s10878-011-9407-1. |
[12] |
S. Hu and L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math., 169 (2014), 140-151.
doi: 10.1016/j.dam.2013.12.024. |
[13] |
S. Hu and L. Qi, The Laplacian of a uniform hypergraph, J. Comb. Optim., 29 (2015), 331-366.
doi: 10.1007/s10878-013-9596-x. |
[14] |
S. Hu, L. Qi and J.-Y. Shao, Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues, Linear Algebra Appl., 439 (2013), 2980-2998.
doi: 10.1016/j.laa.2013.08.028. |
[15] |
B. Jiang, S. Ma and S. Zhang, Alternating direction method of multipliers for real and complex polynomial optimization models, Optimization, 63 (2014), 883-898.
doi: 10.1080/02331934.2014.895901. |
[16] |
G. Li, L. Qi and G. Yu, The $Z$-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., 20 (2013), 1001-1029.
doi: 10.1002/nla.1877. |
[17] |
K. Li and L. Wang, A polynomial time approximation scheme for embedding a directed hypergraph on a ring, Inform. Process. Lett., 97 (2006), 203-207.
doi: 10.1016/j.ipl.2005.10.008. |
[18] |
H. Z. Luo, H. X. Wu and G. T. Chen, On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming, J. Global Optim., 54 (2012), 599-618.
doi: 10.1007/s10898-011-9779-x. |
[19] |
K. J. Pearson and T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30 (2014), 1233-1248.
doi: 10.1007/s00373-013-1340-x. |
[20] |
J. M. Peña, A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027-1037 (electronic).
doi: 10.1137/S0895479800370342. |
[21] |
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[22] |
L. Qi, $H^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[23] |
L. Qi, J.-Y. Shao and Q. Wang, Regular uniform hypergraphs, $s$-cycles, $s$-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl., 443 (2014), 215-227.
doi: 10.1016/j.laa.2013.11.008. |
[24] |
L. Qi and Y. Song, An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312.
doi: 10.1016/j.laa.2014.05.026. |
[25] |
L. Qi, G. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138. |
[26] |
L. Qi, G. Yu and Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vision, 45 (2013), 103-113.
doi: 10.1007/s10851-012-0346-y. |
[27] |
M. Rezghi and L. Eldén, Diagonalization of tensors with circulant structure, Linear Algebra Appl., 435 (2011), 422-447.
doi: 10.1016/j.laa.2010.03.032. |
[28] |
H. Tijms, A First Course in Stochastic Models, John Wiley, New York, 2003.
doi: 10.1002/047001363X. |
[29] |
Wikipedia, Circulant matrix - wikipedia, the free encyclopedia, 2015,, , ().
|
[30] |
J. Xie and A. Chang, H-eigenvalues of signless Laplacian tensor for an even uniform hypergraph, Front. Math. China, 8 (2013), 107-127.
doi: 10.1007/s11464-012-0266-6. |
[31] |
J. Xie and A. Chang, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra Appl., 20 (2013), 1030-1045.
doi: 10.1002/nla.1910. |
[1] |
Haibin Chen, Liqun Qi. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1263-1274. doi: 10.3934/jimo.2015.11.1263 |
[2] |
Yangyang Xu, Wotao Yin, Stanley Osher. Learning circulant sensing kernels. Inverse Problems and Imaging, 2014, 8 (3) : 901-923. doi: 10.3934/ipi.2014.8.901 |
[3] |
Yi Xu, Jinjie Liu, Liqun Qi. A new class of positive semi-definite tensors. Journal of Industrial and Management Optimization, 2020, 16 (2) : 933-943. doi: 10.3934/jimo.2018186 |
[4] |
T. Aaron Gulliver, Masaaki Harada. On the performance of optimal double circulant even codes. Advances in Mathematics of Communications, 2017, 11 (4) : 767-775. doi: 10.3934/amc.2017056 |
[5] |
Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193 |
[6] |
Steven T. Dougherty, Jon-Lark Kim, Patrick Solé. Double circulant codes from two class association schemes. Advances in Mathematics of Communications, 2007, 1 (1) : 45-64. doi: 10.3934/amc.2007.1.45 |
[7] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[8] |
Samuel T. Blake, Andrew Z. Tirkel. A multi-dimensional block-circulant perfect array construction. Advances in Mathematics of Communications, 2017, 11 (2) : 367-371. doi: 10.3934/amc.2017030 |
[9] |
Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433 |
[10] |
Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031 |
[11] |
Yining Gu, Wei Wu. New bounds for eigenvalues of strictly diagonally dominant tensors. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 203-210. doi: 10.3934/naco.2018012 |
[12] |
Yannan Chen, Jingya Chang. A trust region algorithm for computing extreme eigenvalues of tensors. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 475-485. doi: 10.3934/naco.2020046 |
[13] |
Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014 |
[14] |
Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077 |
[15] |
Joe Gildea, Abidin Kaya, Adam Michael Roberts, Rhian Taylor, Alexander Tylyshchak. New self-dual codes from $ 2 \times 2 $ block circulant matrices, group rings and neighbours of neighbours. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021039 |
[16] |
Christopher Griffin, James Fan. Control problems with vanishing Lie Bracket arising from complete odd circulant evolutionary games. Journal of Dynamics and Games, 2022, 9 (2) : 165-189. doi: 10.3934/jdg.2022002 |
[17] |
Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 583-599. doi: 10.3934/naco.2013.3.583 |
[18] |
T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223 |
[19] |
Juan Meng, Yisheng Song. Upper bounds for Z$ _1 $-eigenvalues of generalized Hilbert tensors. Journal of Industrial and Management Optimization, 2020, 16 (2) : 911-918. doi: 10.3934/jimo.2018184 |
[20] |
Li Li, Xinzhen Zhang, Zheng-Hai Huang, Liqun Qi. Test of copositive tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 881-891. doi: 10.3934/jimo.2018075 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]