-
Previous Article
Semicontinuity of approximate solution mappings to generalized vector equilibrium problems
- JIMO Home
- This Issue
-
Next Article
Stability analysis of a delayed social epidemics model with general contact rate and its optimal control
A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises
1. | College of Sciences, Shandong Jiaotong University, Jinan 250023, China |
References:
[1] |
D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Appl. Math. Optim., 63 (2011), 341-356.
doi: 10.1007/s00245-010-9123-8. |
[2] |
A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, 1992.
doi: 10.1017/CBO9780511526503. |
[3] |
R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Process. Appl., 119 (2009), 3133-3154.
doi: 10.1016/j.spa.2009.05.002. |
[4] |
X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Trans. Automat. Control, 59 (2014), 1833-1844.
doi: 10.1109/TAC.2014.2311875. |
[5] |
R. Elliott, X. Li and Y. Ni, Discrete time mean-field stochastic linear quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.
doi: 10.1016/j.automatica.2013.08.017. |
[6] |
M. Hafayed, A mean-field maximum principle for optimal control of forward-backward stochastic differential equations with Poisson jump processes, Int. J. Dynam. Control, 1 (2013), 300-315.
doi: 10.1007/s40435-013-0027-8. |
[7] |
M. Hafayed, A mean-field necessary and sufficient conditions for optimal singular stochastic control, Commun. Math. Stat., 1 (2013), 417-435.
doi: 10.1007/s40304-014-0023-0. |
[8] |
M. Hafayed, Singular mean-field optimal control for forward-backward stochastic systems and applications to finance, Int. J. Dynam. Control, 2 (2014), 542-554.
doi: 10.1007/s40435-014-0080-y. |
[9] |
M. Hafayed, A. Abba and S. Abbas, On mean-field stochastic maximum principle for near optimal controls for poisson jump diffusion with applications, Int. J. Dynam. Control, 2 (2014), 262-284.
doi: 10.1007/s40435-013-0040-y. |
[10] |
M. Hafayed and S. Abbas, On near-optimal mean-field stochastic singular controls: Necessary and sufficient conditions for near-optimality, J. Optim. Theory Appl., 160 (2014), 778-808.
doi: 10.1007/s10957-013-0361-1. |
[11] |
J. Huang, X. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Math. Control Relat. Fields, 5 (2015), 97-139.
doi: 10.3934/mcrf.2015.5.97. |
[12] |
J. Huang, G. Wang and Z. Wu, Optimal premium policy of an insurance firm: Full and partial information, Insurance: Math. Econ., 47 (2010), 208-215.
doi: 10.1016/j.insmatheco.2010.04.007. |
[13] |
T. Meyer-Brandis, B. Øksendal and X. Zhou, A mean-field stochastic maximum principle via Malliavin calculus, Stochastics, 84 (2012), 643-666.
doi: 10.1080/17442508.2011.651619. |
[14] |
Y. Ni, J. Zhang and X. Li, Indefinite mean-field stochastic linear-quadratic optimal control, IEEE Trans. Automat. Control, 60 (2015), 1786-1800.
doi: 10.1109/TAC.2014.2385253. |
[15] |
G. Wang and Z. Wu, Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems, J. Math. Anal. Appl., 342 (2008), 1280-1296.
doi: 10.1016/j.jmaa.2007.12.072. |
[16] |
G. Wang, Z. Wu and J. Xiong, Maximum principle for forward-backward stochastic control systems with corrected state and observation noises, SIAM J. Control Optim., 51 (2013), 491-524.
doi: 10.1137/110846920. |
[17] |
G. Wang, Z. Wu and C. Zhang, Maximum principles for partially observed mean-field stochastic systems with applications to financial engineering, Proceedings of the 33rd Chinese Control Conference, July 28-30, 2014, Nanjing, China, 5357-5362.
doi: 10.1109/ChiCC.2014.6895853. |
[18] |
G. Wang, C. Zhang and W. Zhang, Stochastic maximum principle for mean-field type optimal control under partial information, IEEE Trans. Automat. Control, 59 (2014), 522-528.
doi: 10.1109/TAC.2013.2273265. |
[19] |
W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control, 6 (1968), 312-326.
doi: 10.1137/0306023. |
[20] |
H. Xiao and G. Wang, The filtering equations of forward-backward stochastic systems with random jumps and applications to partial information stochastic optimal control, Stoch. Anal. Appl., 28 (2010), 1003-1019.
doi: 10.1080/07362994.2010.515480. |
[21] |
J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford University Press, 2008. |
[22] |
J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM J. Control Optim., 51 (2013), 2809-2838.
doi: 10.1137/120892477. |
show all references
References:
[1] |
D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Appl. Math. Optim., 63 (2011), 341-356.
doi: 10.1007/s00245-010-9123-8. |
[2] |
A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, 1992.
doi: 10.1017/CBO9780511526503. |
[3] |
R. Buckdahn, J. Li and S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Process. Appl., 119 (2009), 3133-3154.
doi: 10.1016/j.spa.2009.05.002. |
[4] |
X. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Trans. Automat. Control, 59 (2014), 1833-1844.
doi: 10.1109/TAC.2014.2311875. |
[5] |
R. Elliott, X. Li and Y. Ni, Discrete time mean-field stochastic linear quadratic optimal control problems, Automatica, 49 (2013), 3222-3233.
doi: 10.1016/j.automatica.2013.08.017. |
[6] |
M. Hafayed, A mean-field maximum principle for optimal control of forward-backward stochastic differential equations with Poisson jump processes, Int. J. Dynam. Control, 1 (2013), 300-315.
doi: 10.1007/s40435-013-0027-8. |
[7] |
M. Hafayed, A mean-field necessary and sufficient conditions for optimal singular stochastic control, Commun. Math. Stat., 1 (2013), 417-435.
doi: 10.1007/s40304-014-0023-0. |
[8] |
M. Hafayed, Singular mean-field optimal control for forward-backward stochastic systems and applications to finance, Int. J. Dynam. Control, 2 (2014), 542-554.
doi: 10.1007/s40435-014-0080-y. |
[9] |
M. Hafayed, A. Abba and S. Abbas, On mean-field stochastic maximum principle for near optimal controls for poisson jump diffusion with applications, Int. J. Dynam. Control, 2 (2014), 262-284.
doi: 10.1007/s40435-013-0040-y. |
[10] |
M. Hafayed and S. Abbas, On near-optimal mean-field stochastic singular controls: Necessary and sufficient conditions for near-optimality, J. Optim. Theory Appl., 160 (2014), 778-808.
doi: 10.1007/s10957-013-0361-1. |
[11] |
J. Huang, X. Li and J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon, Math. Control Relat. Fields, 5 (2015), 97-139.
doi: 10.3934/mcrf.2015.5.97. |
[12] |
J. Huang, G. Wang and Z. Wu, Optimal premium policy of an insurance firm: Full and partial information, Insurance: Math. Econ., 47 (2010), 208-215.
doi: 10.1016/j.insmatheco.2010.04.007. |
[13] |
T. Meyer-Brandis, B. Øksendal and X. Zhou, A mean-field stochastic maximum principle via Malliavin calculus, Stochastics, 84 (2012), 643-666.
doi: 10.1080/17442508.2011.651619. |
[14] |
Y. Ni, J. Zhang and X. Li, Indefinite mean-field stochastic linear-quadratic optimal control, IEEE Trans. Automat. Control, 60 (2015), 1786-1800.
doi: 10.1109/TAC.2014.2385253. |
[15] |
G. Wang and Z. Wu, Kalman-Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems, J. Math. Anal. Appl., 342 (2008), 1280-1296.
doi: 10.1016/j.jmaa.2007.12.072. |
[16] |
G. Wang, Z. Wu and J. Xiong, Maximum principle for forward-backward stochastic control systems with corrected state and observation noises, SIAM J. Control Optim., 51 (2013), 491-524.
doi: 10.1137/110846920. |
[17] |
G. Wang, Z. Wu and C. Zhang, Maximum principles for partially observed mean-field stochastic systems with applications to financial engineering, Proceedings of the 33rd Chinese Control Conference, July 28-30, 2014, Nanjing, China, 5357-5362.
doi: 10.1109/ChiCC.2014.6895853. |
[18] |
G. Wang, C. Zhang and W. Zhang, Stochastic maximum principle for mean-field type optimal control under partial information, IEEE Trans. Automat. Control, 59 (2014), 522-528.
doi: 10.1109/TAC.2013.2273265. |
[19] |
W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control, 6 (1968), 312-326.
doi: 10.1137/0306023. |
[20] |
H. Xiao and G. Wang, The filtering equations of forward-backward stochastic systems with random jumps and applications to partial information stochastic optimal control, Stoch. Anal. Appl., 28 (2010), 1003-1019.
doi: 10.1080/07362994.2010.515480. |
[21] |
J. Xiong, An Introduction to Stochastic Filtering Theory, Oxford University Press, 2008. |
[22] |
J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM J. Control Optim., 51 (2013), 2809-2838.
doi: 10.1137/120892477. |
[1] |
Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002 |
[2] |
Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control and Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026 |
[3] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[4] |
Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018 |
[5] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[6] |
Xun Li, Jingrui Sun, Jiongmin Yong. Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 2-. doi: 10.1186/s41546-016-0002-3 |
[7] |
Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023 |
[8] |
Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035 |
[9] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[10] |
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004 |
[11] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[12] |
Charlotte Beauthier, Joseph J. Winkin, Denis Dochain. Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat. Evolution Equations and Control Theory, 2015, 4 (2) : 143-158. doi: 10.3934/eect.2015.4.143 |
[13] |
Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082 |
[14] |
Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699 |
[15] |
Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299 |
[16] |
Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080 |
[17] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011 |
[18] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics and Games, 2021, 8 (4) : 445-465. doi: 10.3934/jdg.2021006 |
[19] |
Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096 |
[20] |
Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]