-
Previous Article
Merton problem in an infinite horizon and a discrete time with frictions
- JIMO Home
- This Issue
-
Next Article
Semicontinuity of approximate solution mappings to generalized vector equilibrium problems
Revenue congestion: An application of data envelopment analysis
1. | Department of Mathematics, South Tehran Branch, Islamic Azad University, Tehran, Iran |
2. | Department of Financial Engineering, Faculty of Engineering, University of Science and Culture, Tehran, Iran |
3. | Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran, Iran |
References:
[1] |
G. R. Amin and M. Toloo, Finding the most efficient DMUs in DEA: An improved integrated model,, Computers and Industrial Engineering, 52 (2007), 71.
doi: 10.1016/j.cie.2006.10.003. |
[2] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Accounting for slacks to measure and decompose revenue efficiency in the Spanish Designation of Origin wines with DEA,, European Journal of Operational Research, 231 (2013), 443.
doi: 10.1016/j.ejor.2013.05.047. |
[3] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Measuring and decomposing firm's revenue and cost efficiency: The Russell measures revisited,, International Journal of Production Economics, 165 (2015), 19.
doi: 10.1016/j.ijpe.2015.03.018. |
[4] |
P. L. Brocket, W. W. Cooper, H. C. Shin and Y. Wang, Inefficiency and congestion in Chinese production before and after the 1978 economic reforms,, Socio-Economic Planning Sciences, 32 (1998), 1.
doi: 10.1016/S0038-0121(97)00020-7. |
[5] |
W. Cook, Y. Roll and A. Kazakov, A DEA model for measuring the relative efficiencies of highway maintenance patrols,, Information Systems and Operational Research, 28 (1990), 113. Google Scholar |
[6] |
W. W. Cooper, R. G. Thompson and R. M. Thrall, Intoduction: Extensions and new developments in DEA,, Annals of Operations Research, 66 (1996), 3.
doi: 10.1007/BF02125451. |
[7] |
W. W. Cooper, L. M. Seiford and J. Zhu, A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA,, Socio-Economic Planning Sciences, 34 (2000), 1.
doi: 10.1016/S0038-0121(99)00010-5. |
[8] |
W. W. Cooper, B. Gu and S. Li, Comparisons and evaluations of alternative approaches to the treatment of congestion in DEA,, European Journal of Operational Research, 132 (2001), 62.
doi: 10.1016/S0377-2217(00)00113-2. |
[9] |
G. Debreu, The coefficient of resource utilization,, Econometrica, 19 (1951), 273. Google Scholar |
[10] |
R. Färe and L. Svensson, Congestion of production factors,, Econometrica, 48 (1980), 1745. Google Scholar |
[11] |
R. Färe and S. Grosskopf, Measuring congestion in production,, Zeitschrift für Nationalökonomie, 43 (1983), 257.
doi: 10.1007/BF01283574. |
[12] |
R. Färe, S. Grosskopf and C. A. K. Lovell, The Measurement of Efficiency of Production,, Boston: Kluwer Nijhoff, (1985). Google Scholar |
[13] |
M. J. Farrell, The measurement of productive efficiency,, Journal of the Royal Statistical Society, 120 (1957), 253.
doi: 10.2307/2343100. |
[14] |
G. R. Jahanshahloo and M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion considering textile industry of China,, Applied Mathematics and computation, 151 (2004), 263.
doi: 10.1016/S0096-3003(03)00337-0. |
[15] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi and M. Moradi, A DEA approach for fair allocation of common revenue,, Applied Mathematics and Computation, 160 (2005), 719.
doi: 10.1016/j.amc.2003.11.027. |
[16] |
G. R. Jahanshahloo, A. Memariani, F. Hosseinzadeh Lotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common Set of weights,, Applied Mathematics and computation, 166 (2005), 265.
doi: 10.1016/j.amc.2004.04.088. |
[17] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information: With an application to European commercial banks,, European Journal of Operational Research, 134 (2001), 43.
doi: 10.1016/S0377-2217(00)00237-X. |
[18] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information,, European Journal of Operational Research, 144 (2003), 454.
doi: 10.1016/S0377-2217(01)00398-8. |
[19] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and computation, 218 (2011), 3680.
doi: 10.1016/j.amc.2011.09.011. |
[20] |
F. F. Liu and H. H. Peng, Ranking of units on the DEA frontier with common weights,, Computers and Opreations Research, 35 (2008), 1624.
doi: 10.1016/j.cor.2006.09.006. |
[21] |
A. A. Noura, F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, S. Fanati Rashidi and B. R. Parker, A new method for measuring congestion in data envelopment analysis,, Socio-Economic Planning Sciences, 44 (2010), 240.
doi: 10.1016/j.seps.2010.06.003. |
[22] |
Y. Roll, W. Cook and B. Golany, Controlling factor weights in data envelopment analysis,, IIE Transactions, 23 (1991), 2.
doi: 10.1080/07408179108963835. |
[23] |
B. K. Sahoo, M. Mehdiloozad and K. Tone, Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach,, European Journal of Operational Research, 237 (2014), 921.
doi: 10.1016/j.ejor.2014.02.017. |
[24] |
Z. Sinuany-Stern and L. Friedman, DEA and discriminant analysis of ratios for ranking units,, European Journal of Operational Research, 111 (1998), 470.
doi: 10.1016/S0377-2217(97)00313-5. |
[25] |
T. Sueyoshi and K. Sekitani, DEA congestion and returns to scale under an occurrence of multiple optimal projections,, European Journal of Operational Research, 194 (2009), 592.
doi: 10.1016/j.ejor.2007.12.022. |
[26] |
K. Tone and B. K. Sahoo, Degree of scale economies and congestion: A unified DEA approach,, European Journal of Operational Research, 158 (2004), 755.
doi: 10.1016/S0377-2217(03)00370-9. |
[27] |
Q. L. Wei and H. Yan, Congestion and returns to scale in data envelopment analysis,, European Journal of Operational Research, 153 (2004), 641.
doi: 10.1016/S0377-2217(02)00799-3. |
[28] |
H. Zare-Haghighi, M. Rostamy-Malkhalifeh and G. R. Jahanshahloo, Measurement of congestion in the simultaneous presence of desirable and undesirable outputs,, Journal of Applied Mathematics, 2014 (2014), 1.
doi: 10.1155/2014/512157. |
show all references
References:
[1] |
G. R. Amin and M. Toloo, Finding the most efficient DMUs in DEA: An improved integrated model,, Computers and Industrial Engineering, 52 (2007), 71.
doi: 10.1016/j.cie.2006.10.003. |
[2] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Accounting for slacks to measure and decompose revenue efficiency in the Spanish Designation of Origin wines with DEA,, European Journal of Operational Research, 231 (2013), 443.
doi: 10.1016/j.ejor.2013.05.047. |
[3] |
J. Aparicio, F. Borras, J. T. Pastor and F. Vidal, Measuring and decomposing firm's revenue and cost efficiency: The Russell measures revisited,, International Journal of Production Economics, 165 (2015), 19.
doi: 10.1016/j.ijpe.2015.03.018. |
[4] |
P. L. Brocket, W. W. Cooper, H. C. Shin and Y. Wang, Inefficiency and congestion in Chinese production before and after the 1978 economic reforms,, Socio-Economic Planning Sciences, 32 (1998), 1.
doi: 10.1016/S0038-0121(97)00020-7. |
[5] |
W. Cook, Y. Roll and A. Kazakov, A DEA model for measuring the relative efficiencies of highway maintenance patrols,, Information Systems and Operational Research, 28 (1990), 113. Google Scholar |
[6] |
W. W. Cooper, R. G. Thompson and R. M. Thrall, Intoduction: Extensions and new developments in DEA,, Annals of Operations Research, 66 (1996), 3.
doi: 10.1007/BF02125451. |
[7] |
W. W. Cooper, L. M. Seiford and J. Zhu, A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA,, Socio-Economic Planning Sciences, 34 (2000), 1.
doi: 10.1016/S0038-0121(99)00010-5. |
[8] |
W. W. Cooper, B. Gu and S. Li, Comparisons and evaluations of alternative approaches to the treatment of congestion in DEA,, European Journal of Operational Research, 132 (2001), 62.
doi: 10.1016/S0377-2217(00)00113-2. |
[9] |
G. Debreu, The coefficient of resource utilization,, Econometrica, 19 (1951), 273. Google Scholar |
[10] |
R. Färe and L. Svensson, Congestion of production factors,, Econometrica, 48 (1980), 1745. Google Scholar |
[11] |
R. Färe and S. Grosskopf, Measuring congestion in production,, Zeitschrift für Nationalökonomie, 43 (1983), 257.
doi: 10.1007/BF01283574. |
[12] |
R. Färe, S. Grosskopf and C. A. K. Lovell, The Measurement of Efficiency of Production,, Boston: Kluwer Nijhoff, (1985). Google Scholar |
[13] |
M. J. Farrell, The measurement of productive efficiency,, Journal of the Royal Statistical Society, 120 (1957), 253.
doi: 10.2307/2343100. |
[14] |
G. R. Jahanshahloo and M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion considering textile industry of China,, Applied Mathematics and computation, 151 (2004), 263.
doi: 10.1016/S0096-3003(03)00337-0. |
[15] |
G. R. Jahanshahloo, F. Hosseinzadeh Lotfi and M. Moradi, A DEA approach for fair allocation of common revenue,, Applied Mathematics and Computation, 160 (2005), 719.
doi: 10.1016/j.amc.2003.11.027. |
[16] |
G. R. Jahanshahloo, A. Memariani, F. Hosseinzadeh Lotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common Set of weights,, Applied Mathematics and computation, 166 (2005), 265.
doi: 10.1016/j.amc.2004.04.088. |
[17] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information: With an application to European commercial banks,, European Journal of Operational Research, 134 (2001), 43.
doi: 10.1016/S0377-2217(00)00237-X. |
[18] |
T. Kuosmanen and T. Post, Measuring economic efficiency with incomplete price information,, European Journal of Operational Research, 144 (2003), 454.
doi: 10.1016/S0377-2217(01)00398-8. |
[19] |
R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and computation, 218 (2011), 3680.
doi: 10.1016/j.amc.2011.09.011. |
[20] |
F. F. Liu and H. H. Peng, Ranking of units on the DEA frontier with common weights,, Computers and Opreations Research, 35 (2008), 1624.
doi: 10.1016/j.cor.2006.09.006. |
[21] |
A. A. Noura, F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, S. Fanati Rashidi and B. R. Parker, A new method for measuring congestion in data envelopment analysis,, Socio-Economic Planning Sciences, 44 (2010), 240.
doi: 10.1016/j.seps.2010.06.003. |
[22] |
Y. Roll, W. Cook and B. Golany, Controlling factor weights in data envelopment analysis,, IIE Transactions, 23 (1991), 2.
doi: 10.1080/07408179108963835. |
[23] |
B. K. Sahoo, M. Mehdiloozad and K. Tone, Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach,, European Journal of Operational Research, 237 (2014), 921.
doi: 10.1016/j.ejor.2014.02.017. |
[24] |
Z. Sinuany-Stern and L. Friedman, DEA and discriminant analysis of ratios for ranking units,, European Journal of Operational Research, 111 (1998), 470.
doi: 10.1016/S0377-2217(97)00313-5. |
[25] |
T. Sueyoshi and K. Sekitani, DEA congestion and returns to scale under an occurrence of multiple optimal projections,, European Journal of Operational Research, 194 (2009), 592.
doi: 10.1016/j.ejor.2007.12.022. |
[26] |
K. Tone and B. K. Sahoo, Degree of scale economies and congestion: A unified DEA approach,, European Journal of Operational Research, 158 (2004), 755.
doi: 10.1016/S0377-2217(03)00370-9. |
[27] |
Q. L. Wei and H. Yan, Congestion and returns to scale in data envelopment analysis,, European Journal of Operational Research, 153 (2004), 641.
doi: 10.1016/S0377-2217(02)00799-3. |
[28] |
H. Zare-Haghighi, M. Rostamy-Malkhalifeh and G. R. Jahanshahloo, Measurement of congestion in the simultaneous presence of desirable and undesirable outputs,, Journal of Applied Mathematics, 2014 (2014), 1.
doi: 10.1155/2014/512157. |
[1] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[2] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[3] |
Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020165 |
[4] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[5] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[6] |
Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021 doi: 10.3934/fods.2021002 |
[7] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[8] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[9] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[10] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[11] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[12] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[13] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[14] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[15] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[16] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[17] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[18] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[19] |
Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046 |
[20] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]