• Previous Article
    System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy
  • JIMO Home
  • This Issue
  • Next Article
    A priority-based genetic algorithm for a flexible job shop scheduling problem
October  2016, 12(4): 1417-1433. doi: 10.3934/jimo.2016.12.1417

Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set

1. 

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam, Vietnam

Received  December 2014 Revised  June 2015 Published  January 2016

In this paper, an algorithm of the branch and bound type in outcome space is proposed for solving a global optimization problem that includes, as a special case, generalized multiplicative problems. As an application, we solve the problem of optimizing over the efficient set of a bicriteria concave maximization problem. Preliminary computational experiments show that this algorithm works well for problems where the dimensions of the decision space can be fairly large.
Citation: Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417
References:
[1]

J. Optim. Theory Appl., 149 (2011), 411-419. doi: 10.1007/s10957-010-9782-2.  Google Scholar

[2]

J. Global Optim., 3 (1993), 95-111. doi: 10.1007/BF01100242.  Google Scholar

[3]

J. Optim. Theory Appl., 88 (1996), 77-105. doi: 10.1007/BF02192023.  Google Scholar

[4]

J. Optim. Theory Appl., 137 (2008), 105-120. doi: 10.1007/s10957-007-9323-9.  Google Scholar

[5]

J. Optim. Theory Appl., 105 (2000), 37-54. doi: 10.1023/A:1004657827134.  Google Scholar

[6]

J. Optim. Theory Appl., 92 (1997), 605-631. doi: 10.1023/A:1022659523991.  Google Scholar

[7]

Eur. J. Oper. Res., 33 (1988), 91-97. doi: 10.1016/0377-2217(88)90257-3.  Google Scholar

[8]

J. Global Optim., 10 (1997), 229-256. doi: 10.1023/A:1008203116882.  Google Scholar

[9]

in Modelling, Computation and Optimization in Information Systems and Management Sciences (eds. L. T. H. An, P. Bouvry and P. D. Tao), Communications in Computer and Information Science, 14 (2008), 234-243. Google Scholar

[10]

Optim. 51 (2002), 401-421. doi: 10.1080/02331930290019486.  Google Scholar

[11]

Pacific J. Optim., 9 (2013), 103-115.  Google Scholar

[12]

J. Global Optim, 4 (1994), 47-62. doi: 10.1007/BF01096534.  Google Scholar

[13]

Springer-Verlag, Berlin, Germany, 1989.  Google Scholar

[14]

in Recent Advances in Optimization (eds. P. Gritzmann, R. Horst, E. Sachs and R. Tichatschke), Lecture Notes in Economics and Mathematical Systems, 452 (1997), 183-195. doi: 10.1007/978-3-642-59073-3_13.  Google Scholar

[15]

SIAM J. Optim., 15 (2005), 987-1001. doi: 10.1137/040603097.  Google Scholar

[16]

Optim., 24 (1992), 57-62. doi: 10.1080/02331939208843779.  Google Scholar

[17]

Vietnam J. Math., 33 (2005), 463-468.  Google Scholar

[18]

in Some Current Advanced Researches on Information and Computer Science in Vietnam, Advances in Intelligent Systems and Computing, 341 (2015), 31-47. doi: 10.1007/978-3-319-14633-1_3.  Google Scholar

[19]

J. Global Optim., 18 (2000), 321-336. doi: 10.1023/A:1026544116333.  Google Scholar

[20]

Kluwer Academic Publishers, 1998. doi: 10.1007/978-1-4757-2809-5.  Google Scholar

[21]

J. Global Optim., 22 (2002), 285-317. doi: 10.1023/A:1013875600711.  Google Scholar

[22]

Plenum Press, New York and London, 1985. doi: 10.1007/978-1-4684-8395-6.  Google Scholar

show all references

References:
[1]

J. Optim. Theory Appl., 149 (2011), 411-419. doi: 10.1007/s10957-010-9782-2.  Google Scholar

[2]

J. Global Optim., 3 (1993), 95-111. doi: 10.1007/BF01100242.  Google Scholar

[3]

J. Optim. Theory Appl., 88 (1996), 77-105. doi: 10.1007/BF02192023.  Google Scholar

[4]

J. Optim. Theory Appl., 137 (2008), 105-120. doi: 10.1007/s10957-007-9323-9.  Google Scholar

[5]

J. Optim. Theory Appl., 105 (2000), 37-54. doi: 10.1023/A:1004657827134.  Google Scholar

[6]

J. Optim. Theory Appl., 92 (1997), 605-631. doi: 10.1023/A:1022659523991.  Google Scholar

[7]

Eur. J. Oper. Res., 33 (1988), 91-97. doi: 10.1016/0377-2217(88)90257-3.  Google Scholar

[8]

J. Global Optim., 10 (1997), 229-256. doi: 10.1023/A:1008203116882.  Google Scholar

[9]

in Modelling, Computation and Optimization in Information Systems and Management Sciences (eds. L. T. H. An, P. Bouvry and P. D. Tao), Communications in Computer and Information Science, 14 (2008), 234-243. Google Scholar

[10]

Optim. 51 (2002), 401-421. doi: 10.1080/02331930290019486.  Google Scholar

[11]

Pacific J. Optim., 9 (2013), 103-115.  Google Scholar

[12]

J. Global Optim, 4 (1994), 47-62. doi: 10.1007/BF01096534.  Google Scholar

[13]

Springer-Verlag, Berlin, Germany, 1989.  Google Scholar

[14]

in Recent Advances in Optimization (eds. P. Gritzmann, R. Horst, E. Sachs and R. Tichatschke), Lecture Notes in Economics and Mathematical Systems, 452 (1997), 183-195. doi: 10.1007/978-3-642-59073-3_13.  Google Scholar

[15]

SIAM J. Optim., 15 (2005), 987-1001. doi: 10.1137/040603097.  Google Scholar

[16]

Optim., 24 (1992), 57-62. doi: 10.1080/02331939208843779.  Google Scholar

[17]

Vietnam J. Math., 33 (2005), 463-468.  Google Scholar

[18]

in Some Current Advanced Researches on Information and Computer Science in Vietnam, Advances in Intelligent Systems and Computing, 341 (2015), 31-47. doi: 10.1007/978-3-319-14633-1_3.  Google Scholar

[19]

J. Global Optim., 18 (2000), 321-336. doi: 10.1023/A:1026544116333.  Google Scholar

[20]

Kluwer Academic Publishers, 1998. doi: 10.1007/978-1-4757-2809-5.  Google Scholar

[21]

J. Global Optim., 22 (2002), 285-317. doi: 10.1023/A:1013875600711.  Google Scholar

[22]

Plenum Press, New York and London, 1985. doi: 10.1007/978-1-4684-8395-6.  Google Scholar

[1]

Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061

[2]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[3]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[5]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[6]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[7]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[8]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[11]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[12]

Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021001

[13]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[14]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[15]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[16]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[17]

Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049

[18]

Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021084

[19]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[20]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]