-
Previous Article
Minimizing the weighted number of tardy jobs on multiple machines: A review
- JIMO Home
- This Issue
-
Next Article
Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set
System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy
1. | School of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China, China |
2. | School of Science, Sichuan University of Science and Engineering, Zigong 643000, China |
References:
[1] |
A. S. Alfa and I. Frigui, Discrete NT-policy single server queue with Markovian arrival process and phase type service,, European Journal of Operational Research, 88 (1996), 599.
doi: 10.1016/0377-2217(94)00206-1. |
[2] |
H. Bruneel and B. G. Kim, Discrete-Time Models for Communication Systems Including ATM,, The Springer International Series In Engineering And Computer Science, 205 (1993).
doi: 10.1007/978-1-4615-3130-2. |
[3] |
B. Feyaerts, S. D. Vuyst, S. Wittevrongel and H. Bruneel, Analysis of a discrete-time queueing system with an NT-policy,, in Analytical and Stochastic Modeling Techniques and Applications (eds. K. L. Begain, 6148 (2010), 29.
doi: 10.1007/978-3-642-13568-2_3. |
[4] |
B. Feyaerts, S. D. Vuyst, H. Bruneel and S. Wittevrongel, The impact of the NT-policy on the behaviour of a discrete-time queue with general service times,, Journal of Industrial and Management Optimization, 10 (2014), 131.
|
[5] |
S. Gao and J. Wang, On a discrete-time $GI^X$/Geo/1/N-G queue with randomized working vacations and at most J vacations,, Journal of Industrial and Management Optimization, 11 (2015), 779.
doi: 10.3934/jimo.2015.11.779. |
[6] |
J. J. Hunter, Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models: Techniques and Applications,, Academic Press, (1983).
|
[7] |
S. Hur, J. Kim and C. Kang, An analysis of the M/G/1 system with $N$ and $T$ policy,, Applied Mathematical Modelling, 27 (2003), 665.
doi: 10.1016/S0307-904X(03)00074-X. |
[8] |
J. C. Ke, Bi-level control for batch arrival queues with an early startup and unreliable server,, Applied Mathematical Modelling, 28 (2004), 469. Google Scholar |
[9] |
H. W. Lee, S. S. Lee, J. O. Park and K. C. Chae, Analysis of $M^X$ /G/1 queue with N-policy and multiple vacations,, Journal of Applied Probability, 31 (1994), 476.
doi: 10.2307/3215040. |
[10] |
H. W. Lee and W. J. Seo, The performance of the M/G/1 queue under the dyadic Min(N, D)-policy and its cost optimization,, Performance Evaluation, 65 (2008), 742. Google Scholar |
[11] |
C. Luo, Y. Tang, W. Li and K. Xiang, The recursive solution of queue length for Geo/G/1 queue with N-policy,, Journal of Systems Science & Complexity, 25 (2012), 293.
doi: 10.1007/s11424-012-9313-3. |
[12] |
T. Meisling, Discrete time queue theory,, Operations Research, 6 (1958), 96.
doi: 10.1287/opre.6.1.96. |
[13] |
S. K. Samanta, M. L. Chaudhry and U. C. Gupta, Discrete-time $Geo^X$/$G^{(a, b)}$/1/N queues with single and multiple vacations,, Mathematical and Computer Modelling, 45 (2007), 93.
doi: 10.1016/j.mcm.2006.04.008. |
[14] |
H. Takagi, Queueing Analysis, A Foundation of Performance Evaluation, Vol. 3: Discrete-Time Systems,, North-Holland, (1993).
|
[15] |
Y. Tang, W. Wu, Y. Liu and X. Liu, The queue length distribution of M/G/1 queueing system with Min(N, V)-policy based on multiple server vacations,, Systems Engineering-Theory & Practice, 34 (2014), 1525. Google Scholar |
[16] |
N. Tian, X. Xu and Z. Ma, Dicrete-Time Queueing Theory,, Science Press, (2008). Google Scholar |
[17] |
N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research & Management Science, (2006).
|
[18] |
N. Tian and Z. G. Zhang, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing System, 38 (2001), 419.
doi: 10.1023/A:1010947911863. |
[19] |
T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most J vacations,, Applied Mathematical Modelling, 35 (2011), 2297.
doi: 10.1016/j.apm.2010.11.021. |
[20] |
Y. Wei, M. Yu, Y. Tang and J. Gu, Queue size distribution and capacity optimum design for N-policy $Geo^{(\lambda _1 , \lambda _2 , \lambda _3)}$/G/1 queue with setup time and variable input rate,, Mathematical and Computer Modelling, 57 (2013), 1559.
doi: 10.1016/j.mcm.2012.12.032. |
[21] |
M. E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues,, IEEE Computer Society Press, (1994). Google Scholar |
[22] |
M. Yu, Y. Tang, Y. Fu and L. Pan, GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period,, Journal of Computational and Applied Mathematics, 235 (2011), 2170.
doi: 10.1016/j.cam.2010.10.013. |
[23] |
D. Yue and F. Zhang, A discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times,, Journal of Systems Science & Complexity, 26 (2013), 556.
doi: 10.1007/s11424-013-1121-x. |
[24] |
D. Yue, W. Yue and G. Zhao, Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states,, Journal of Industrial and Management Optimization, 12 (2016), 653.
doi: 10.3934/jimo.2016.12.653. |
show all references
References:
[1] |
A. S. Alfa and I. Frigui, Discrete NT-policy single server queue with Markovian arrival process and phase type service,, European Journal of Operational Research, 88 (1996), 599.
doi: 10.1016/0377-2217(94)00206-1. |
[2] |
H. Bruneel and B. G. Kim, Discrete-Time Models for Communication Systems Including ATM,, The Springer International Series In Engineering And Computer Science, 205 (1993).
doi: 10.1007/978-1-4615-3130-2. |
[3] |
B. Feyaerts, S. D. Vuyst, S. Wittevrongel and H. Bruneel, Analysis of a discrete-time queueing system with an NT-policy,, in Analytical and Stochastic Modeling Techniques and Applications (eds. K. L. Begain, 6148 (2010), 29.
doi: 10.1007/978-3-642-13568-2_3. |
[4] |
B. Feyaerts, S. D. Vuyst, H. Bruneel and S. Wittevrongel, The impact of the NT-policy on the behaviour of a discrete-time queue with general service times,, Journal of Industrial and Management Optimization, 10 (2014), 131.
|
[5] |
S. Gao and J. Wang, On a discrete-time $GI^X$/Geo/1/N-G queue with randomized working vacations and at most J vacations,, Journal of Industrial and Management Optimization, 11 (2015), 779.
doi: 10.3934/jimo.2015.11.779. |
[6] |
J. J. Hunter, Mathematical Techniques of Applied Probability, Vol. 2, Discrete Time Models: Techniques and Applications,, Academic Press, (1983).
|
[7] |
S. Hur, J. Kim and C. Kang, An analysis of the M/G/1 system with $N$ and $T$ policy,, Applied Mathematical Modelling, 27 (2003), 665.
doi: 10.1016/S0307-904X(03)00074-X. |
[8] |
J. C. Ke, Bi-level control for batch arrival queues with an early startup and unreliable server,, Applied Mathematical Modelling, 28 (2004), 469. Google Scholar |
[9] |
H. W. Lee, S. S. Lee, J. O. Park and K. C. Chae, Analysis of $M^X$ /G/1 queue with N-policy and multiple vacations,, Journal of Applied Probability, 31 (1994), 476.
doi: 10.2307/3215040. |
[10] |
H. W. Lee and W. J. Seo, The performance of the M/G/1 queue under the dyadic Min(N, D)-policy and its cost optimization,, Performance Evaluation, 65 (2008), 742. Google Scholar |
[11] |
C. Luo, Y. Tang, W. Li and K. Xiang, The recursive solution of queue length for Geo/G/1 queue with N-policy,, Journal of Systems Science & Complexity, 25 (2012), 293.
doi: 10.1007/s11424-012-9313-3. |
[12] |
T. Meisling, Discrete time queue theory,, Operations Research, 6 (1958), 96.
doi: 10.1287/opre.6.1.96. |
[13] |
S. K. Samanta, M. L. Chaudhry and U. C. Gupta, Discrete-time $Geo^X$/$G^{(a, b)}$/1/N queues with single and multiple vacations,, Mathematical and Computer Modelling, 45 (2007), 93.
doi: 10.1016/j.mcm.2006.04.008. |
[14] |
H. Takagi, Queueing Analysis, A Foundation of Performance Evaluation, Vol. 3: Discrete-Time Systems,, North-Holland, (1993).
|
[15] |
Y. Tang, W. Wu, Y. Liu and X. Liu, The queue length distribution of M/G/1 queueing system with Min(N, V)-policy based on multiple server vacations,, Systems Engineering-Theory & Practice, 34 (2014), 1525. Google Scholar |
[16] |
N. Tian, X. Xu and Z. Ma, Dicrete-Time Queueing Theory,, Science Press, (2008). Google Scholar |
[17] |
N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research & Management Science, (2006).
|
[18] |
N. Tian and Z. G. Zhang, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing System, 38 (2001), 419.
doi: 10.1023/A:1010947911863. |
[19] |
T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most J vacations,, Applied Mathematical Modelling, 35 (2011), 2297.
doi: 10.1016/j.apm.2010.11.021. |
[20] |
Y. Wei, M. Yu, Y. Tang and J. Gu, Queue size distribution and capacity optimum design for N-policy $Geo^{(\lambda _1 , \lambda _2 , \lambda _3)}$/G/1 queue with setup time and variable input rate,, Mathematical and Computer Modelling, 57 (2013), 1559.
doi: 10.1016/j.mcm.2012.12.032. |
[21] |
M. E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues,, IEEE Computer Society Press, (1994). Google Scholar |
[22] |
M. Yu, Y. Tang, Y. Fu and L. Pan, GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period,, Journal of Computational and Applied Mathematics, 235 (2011), 2170.
doi: 10.1016/j.cam.2010.10.013. |
[23] |
D. Yue and F. Zhang, A discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times,, Journal of Systems Science & Complexity, 26 (2013), 556.
doi: 10.1007/s11424-013-1121-x. |
[24] |
D. Yue, W. Yue and G. Zhao, Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states,, Journal of Industrial and Management Optimization, 12 (2016), 653.
doi: 10.3934/jimo.2016.12.653. |
[1] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[2] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[3] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[4] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[5] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[6] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[7] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[8] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[9] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[10] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[11] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[12] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[13] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[14] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[15] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[16] |
Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020158 |
[17] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[18] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[19] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[20] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]