
Previous Article
Differential optimization in finitedimensional spaces
 JIMO Home
 This Issue

Next Article
System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discretetime queue with single server vacation and under the control of Min($N, V$)policy
Minimizing the weighted number of tardy jobs on multiple machines: A review
1.  Department of Mathematics, University of Lagos, Akoka, Yaba, Lagos 
2.  School of Mathematics, Statistics & Computer Science, University of KwazuluNatal, Private Bag X5400, Durban, 4000 
References:
[1] 
M. O. Adamu and O. Abass, Parallel machine scheduling to maximize the weighted number of justintime jobs, Journal of Applied Science and Technology, 15 (2010), 2734. 
[2] 
M. O. Adamu and A. Adewumi, Metaheuristics for scheduling on parallel machines to minimize the weighted number of early and tardy jobs, International Journal of Physical Sciences, 7 (2012), 16411652. 
[3] 
M. O. Adamu and A. Adewumi, Single machine review to minimize weighted number of tardy jobs, Journal of Industrial and Management Optimization, 10 (2014), 219241. doi: 10.3934/jimo.2014.10.219. 
[4] 
M. O. Adamu, N. Budlender and G. A. Idowu, A Note on justintime scheduling on flow shop machines, Journal of the Nigerian Mathematical Society, 33 (2014), 321331. 
[5] 
R. H. Ahmadi and U. Bagchi, Coordinated Scheduling of Customer Orders, Updated Paper, Anderson School of UCLA, 1997. 
[6] 
S. Albers and P. Brucker, The complexity of one machine batching problem, Discrete Applied Mathematics, 47 (1993), 87107. doi: 10.1016/0166218X(93)900853. 
[7] 
A. Allahverdi, J. N. D. Gupta and T. Aldowaisan, A review of scheduling research involving setup considerations, OMEGA The International Journal of Management Science, 27 (1999), 219239. 
[8] 
A. Allahverdi, C. T. Ng, T. C. E. Cheng and M. Y. Kovalyov., A survey of scheduling problems with setup times or costs, European Journal of Operational Research, 187 (2008), 9851032. doi: 10.1016/j.ejor.2006.06.060. 
[9] 
H. Allaoui and A. Artiba, Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints, Computer and Industrial Engineering, 47 (2004), 431450. 
[10] 
K. R. Baker and G. D. Scudder, Scheduling with earliness and tardiness penalties: A review, Operations Research, 38 (1990), 2236. doi: 10.1287/opre.38.1.22. 
[11] 
M. F. Baki and R. G. Vickson, One operator, two machine open shop and flow shop problems with setup times for machines and weighted number of tardy jobs objective, Optimization Methods and Software, 19 (2004), 165178. doi: 10.1080/10556780410001657653. 
[12] 
P. Baptiste, Batching identical jobs, Mathematical Methods of Operations Research, 52 (2000), 355367. doi: 10.1007/s001860000088. 
[13] 
P. Baptiste, Preemptive Scheduling of Identical Machines, Technical Report, Universite de Technologie de Campiegne, France, 2000. 
[14] 
P. Baptiste, On minimizing the weighted number of late jobs in unit execution time open shops, European Journal of Operational Research, 149 (2003), 344354. doi: 10.1016/S03772217(02)007592. 
[15] 
P. Baptiste, P. Brucker, S. Knust and V. G. Timkovsky, Ten notes on equal processing time scheduling, 40R, 2 (2004), 111127. doi: 10.1007/s1028800300244. 
[16] 
P. Baptiste, A. Jouglet, C. L. Pape and W. Nuijten., A Constraint Based Approach to Minimize the Weighted Number of Late Jobs on Parallel Machines, Technical Report 2000/228, UMR, CNRS 6599, Heudiasyc, France, 2000. 
[17] 
O. J. Boxma and F. G. Forst, Minimizing the expected weighted number of tardy jobs in stochastic flow shops, Operations Research Letters, 5 (1986), 119126. doi: 10.1016/01676377(86)900842. 
[18] 
P. Brucker, Scheduling Algorithms, Springer  Verlag, Berlin, First edition, 1995. 
[19] 
P. Brucker and S. Knust, Complexity Results for Scheduling Problems, 2011, http://www.mathematik.uniosnabrueck.de/research/OR/class/ 
[20] 
P. Brucker and S. Knust, Complexity results for singlemachine problems with positive finishstart timelags, Computing, 63 (1999), 299316. doi: 10.1007/s006070050036. 
[21] 
P. Brucker and A. Kraemer, Polynomial algorithms for resource  constrainted and multiprocessor task scheduling problems, European Journal of Operational Research, 90 (1996), 214226. 
[22] 
P. Brucker, T. C. E. Cheng, S. Knust and N. V. Shakhlevich, Complexity results for flowshop and open shop problems with transportation delays, Annals of Operations Research, 129 (2004), 81106. doi: 10.1023/B:ANOR.0000030683.64615.c8. 
[23] 
P. Brucker, C. DhaenensFlipo, S. Knust, S. A. Kravchenko and F. Werner, Complexity results for parallel machine problems with a single server, Journal of Scheduling, 5 (2002), 429457. doi: 10.1002/jos.120. 
[24] 
P. Brucker, A. Gladky, H. Hoogeveen, M. V. Kovalyov, C. N. Potts, T. Tautenhahn and S. L. Van De Velde, Scheduling a batching machine, Journal of Scheduling, 1 (1998), 3154. doi: 10.1002/(SICI)10991425(199806)1:1<31::AIDJOS4>3.0.CO;2R. 
[25] 
P. Brucker, S. Heitmann and J. Hurink., How useful are preemptive schedule?, Operations Research Letters, 31 (2003), 129136. doi: 10.1016/S01676377(02)002201. 
[26] 
P. Brucker, B. Jurisch, T. Tautenhahn and F. Werner, Scheduling unit time open shops to minimize the weighted number of late jobs, Operations Research Letters, 14 (1993), 245250. doi: 10.1016/01676377(93)90088X. 
[27] 
P. Brucker, B. Jurish and A. Krämer, Complexity of scheduling problems with multipurpose machines, Annals of Operations Research, 70 (1997), 5773. doi: 10.1023/A:1018950911030. 
[28] 
P. Brucker, S. A. Kravchenko and Y. N. Sotskov, On the complexity of two machine jobshop scheduling with regular objective functions, OR Spektrum, 19 (1997), 510. doi: 10.1007/BF01539799. 
[29] 
R. L. Bulfin and R. M'Hallah, Minimizing the weighted number of tardy jobs on a twomachine flow shop, Computers and Operational Research, 30 (2003), 18871900. doi: 10.1016/S03050548(02)001144. 
[30] 
O. Cepek and S. C. Sung, A quadratic time algorithm to maximize the number of justintime jobs on identical parallel machines, Computers and Operational Research, 32 (2005), 32653271. doi: 10.1016/j.cor.2004.05.011. 
[31] 
C. L. Chen, Iterated hybrid metaheuristics algorithms for unrelated parallel machines problem with unequal ready times and sequencedependent setup times, The International Journal of Advanced Manufacturing Technology, 60 (2012), 693705. 
[32] 
C. L. Chen and R. L. Bulfin, Complexity of single machine multicriteria scheduling problems, European Journal of Operational Research, 70 (1993), 115125. 
[33] 
Z. Chen and W. B. Powel, Solving parallel machine scheduling problems by column generation, INFORMS Journal on Computing, 11 (1999), 7894. doi: 10.1287/ijoc.11.1.78. 
[34] 
Z. L. Chen and W. B. Powell, Exact algorithms for scheduling multiple families of jobs on parallel machines, Naval Research Logistics, 50 (2003), 823840. doi: 10.1002/nav.10091. 
[35] 
T. C. E. Cheng and M. Gupta, Survey of scheduling research involving due date assignment, European Journal of Operational Research, 38 (1989), 156166. doi: 10.1016/03772217(89)901008. 
[36] 
T. C. E. Cheng, J. N. D. Gupta and G. Wang, A review of flowshop scheduling research with setup times, Production and Operations Management, 9 (2000), 262282. 
[37] 
T. C. E. Cheng, Q. Wang and J. Yuan, Customer Order Scheduling on Multiple Facilities, Private Communication, 2006. 
[38] 
T. C. Chiang and L. C. Fu, Using a family of critical ratiobased approaches to minimize the number of tardy jobs in the job shop with sequence dependent setup times, European Journal of Operational Research, 196 (2009), 7892. 
[39] 
B. C. Choi and S. H. Yoon, Maximizing the weighted number of justintime jobs in flowshop scheduling, Journal of Scheduling, 10 (2007), 237243. doi: 10.1007/s109510070030z. 
[40] 
H. S. Choi and D. H. Lee, A branch and bound algorithm for two stage flow shops: minimizing the number of tardy jobs, Journal of the Korean Institute of Industrial Engineers, 33 (2007), 213220. 
[41] 
H. S. Choi and D. H. Lee, Scheduling algorithms to minimize the number of tardy jobs in twostage hybrid flow shops, Computers and Industrial Engineering, 56 (2009), 113120. 
[42] 
C. Chu, J. M. Proth and S. Sethi, Heuristic procedure for minimizing makespan and the number of required pallets, European Journal of Operational Research, 86 (1995), 491502. 
[43] 
R. W. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling, AddisonWesley, Reading, M.A., 1967. 
[44] 
F. D. Croce, J. N. D. Gupta and R. Tadei, Minimizing tardy jobs in a flowshop with common due date, European Journal of Operational Research, 120 (2000), 375381. doi: 10.1016/S03772217(99)001642. 
[45] 
S. DauzèrePérès and M. Sevaux, Using Lagrangean Relaxation to Minimize the (Weighted) Number of Late Jobs on a Single Machine, National Contribution IFORS 1999, Beijing, P.R. of China (Technical Report 99/8 Ecole des Minesdes Nantes, France), 1999. 
[46] 
C. Desprez, C. Chu and F. Chu, A genetic algorithm for minimizing the weighted number of tardy jobs, Proceedings of IEEE, (2006), 12711276. 
[47] 
C. Desprez, F. Chu and C. Chu, Minimizing the weighted number of tardy jobs in a hybrid flow shop with genetic algorithm, International Journal of Computer Integrated Manufacturing, 22 (2009), 745757. 
[48] 
M. J. Dessouky, B. J. Lageweg, J. K. Lenstra and S. L. Vande Velde, Scheduling identical jobs on uniform parallel machines, Statistica Neerlandica, 44 (1990), 115123. doi: 10.1111/j.14679574.1990.tb01276.x. 
[49] 
E. Dhouib, J. Teghem and T. Loukil, Minimizing the number of tardy jobs in a permutation flowshop scheduling problem with setup times and time lags constraints, Journal of Mathematical Modelling and Algorithms in Operations Research, 12 (2013), 8599. 
[50] 
J. Du and J. Y. T. Leung, Minimizing the number of late jobs on unrelated machines, Operations Research Letter, 10 (1991), 153158. doi: 10.1016/01676377(91)90032K. 
[51] 
J. Du, J. Y. T. Leung and C. S. Wong, Minimizing the number of late jobs with release time constraint, Journal of Combinatorial Mathematics and Combinatorial Computing, 11 (1992), 97107. 
[52] 
S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop, Ellis Harwood, England, 1982. 
[53] 
G. Galambos and G. J. Woeginger, Minimizing the weighted number of late jobs in uet open shops, Zeitschrift fur Operations Research ZOR  Methematical Methods of Operations Research, 41 (1995), 109114. doi: 10.1007/BF01415068. 
[54] 
M. R. Garey and D. S. Johnson, Strong NPcompleteness results: motivation, examples and implications, Journal of the Association for Computing Machinery, 25 (1978), 499508. doi: 10.1145/322077.322090. 
[55] 
M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP Completeness, Freeman, San Francisco, 1979. 
[56] 
A. A. Gladky, On complexity of minimizing weighted number of late jobs in unit time open shops, Discrete Applied Mathematics, 74 (1997), 197201. doi: 10.1016/S0166218X(97)814485. 
[57] 
R. L. Graham, E. L. Lawler, T. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 5 (1979), 287326. doi: 10.1016/S01675060(08)70356X. 
[58] 
E. Gersl, B. Mor and G. Mosheiov, A note: Maximizing the weighted number of justintime jobs on a proportionate flowshop, Information Procesing Letters, 115 (2015), 159162. doi: 10.1016/j.ipl.2014.09.004. 
[59] 
S. Guirchoun, A. Souhkal and P. Martineau, Complexity results for parallel machine scheduling problems with a server in computer systems, In:Processings of the 2nd Multidisciplinary International Conference on Scheduling: Theory and Application, New York, USA, (2005), 232236. 
[60] 
J. N. D. Gupta and A. M. A. Hariri, Integrating Job Selection and Scheduling in a Flowshop, Working Paper, Department of Management, Ball State University, Muncie, IN., 1994. 
[61] 
J. N. D. Gupta and A. M. A. Hariri, Two machine flow shop to minimize number of tardy jobs, Journal of Operational Research Society, 48 (1997), 212220. 
[62] 
J. N. D. Gupta and E. A. Tunc, Minimizing tardy jobs in a twostage hybrid flowshop, International Journal of Production Research, 36 (1998), 23972417. 
[63] 
N. G. Hall, C. N. Potts and C. Sriskandarajah, Parallel machine scheduling with a common server, Discrete Applied Mathematics, 102 (2000), 223243. doi: 10.1016/S0166218X(99)002061. 
[64] 
A. M. A. Hariri and C. N. Potts, A branch and bound algorithm to minimize number of late jobs in a permutation flow shop, European Journal of Operational Research, 38 (1989), 228237. doi: 10.1016/03772217(89)901082. 
[65] 
K. Hiraishi, E. Levner and M. Vlach, Scheduling of parallel identical machines to maximize the weighted number of justintime jobs, Computers and Operations Research, 29 (2002), 841848. doi: 10.1016/S03050548(00)000861. 
[66] 
J. C. Ho and Y. L. Chang, Minimizing the number of tardy jobs for m parallel machines, European Journal of Operational Research, 84 (1995), 343355. 
[67] 
J. C. Ho and J. N. D. Gupta, Flowshop Scheduling with Dominant machine, Computers and Operations Research, 22 (1995), 237246. 
[68] 
H. Hoogeveen, Multicriteria scheduling, European Journal of Operational Research, 167 (2005), 592623. doi: 10.1016/j.ejor.2004.07.011. 
[69] 
H. L. Huang and B. M. T. Lin, Concurrent open shop problem to minimize the weighted number of late jobs, Multiprocessor Scheduling: Theory and Applications, Itech Education and Publishing, Vienna, (2007), 215220. 
[70] 
A. S. Jain and S. Meeran, Deterministic job shop scheduling: Past, present and future, European Journal of Operational Research, 113 (1999), 390434. 
[71] 
A. Janiak, W. A. Janiak and R. Januszkiewicz, Algorithms for parallel processor scheduling with distinct due windows and unittime jobs, Bulletin of the Polish Academy of Sciences Technical Sciences, 57 (2009), 209215. 
[72] 
F. Jolai, M. S. Amalnick and M. Alinaghian, A hybrid memetic algorithm for maximizing the weighted number of justintime jobs on unrelated parallel machines, Journal of Intelligence Manufacturing, 22 (2011), 247261. 
[73] 
J. Josefowska, B. Jurisch and W. Kubiak, Scheduling shops to minimize the weighted number of late jobs, Operations Research Letters, 10 (1994), 2733. 
[74] 
J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines and dual criteria, OttovonGuerickeUniversitat Magdeburg, Preprint, 28/05 (2005), 123. 
[75] 
J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, Constructive tabu search algorithms for hybrid flowshop problems with unrelated parallel machines and setup times, International Journal of Computational Science, 1 (2007), 204214. 
[76] 
S. Knust, Shopscheduling problems with transportation, PhD Thesis, Universität Osnabrück, Fachbereich Mathematik/Informatik, 1999. 
[77] 
A. Krämer, Scheduling Multi processor Tasks in Dedicated Processors, PhD Thesis, Universität, Osnabrück, Fachbereich Mathematik/Informatik, 1995. 
[78] 
S. Kravchenko and F. Werner, Parallel machine problems with equal processing times: A survey, J. Sched., 14 (2011), 435444. doi: 10.1007/s1095101102313. 
[79] 
S. A. Kravchenko, Minimizing the number of late jobs for the twomachine unittime job shop scheduling problem, Discrete Applied Mathematics, 98 (2000), 209217. doi: 10.1016/S0166218X(99)001651. 
[80] 
S. A. Kravchenko, On the complexity of minimizing the number of late jobs in unit time open shop, Discrete Applied Mathematics, 100 (2000), 127132. doi: 10.1016/S0166218X(99)002024. 
[81] 
W. Kubiak, C. Sriskandarajah and K. Zaras, A note on the complexity of open shop scheduling problems, INFOR, 29 (1991), 284294. 
[82] 
A. Lann and G. Mosheiov, A note on the maximum number of ontime jobs on parallel identical machines, Computers and Operations Research, 30 (2003), 17451749. doi: 10.1016/S03050548(02)000849. 
[83] 
E. L. Lawler and C. U. Martel, Preemptive scheduling of two uniform machines to minimize the number of late jobs, Operations Research, 37 (1989), 314318. doi: 10.1287/opre.37.2.314. 
[84] 
E. L. Lawler and J. M. Moore, A functional equation and its applications to resource allocation and sequencing problems, Management Science, 16 (1969), 7784. 
[85] 
E. L. Lawler, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Report BW 106/79, Math. Centre, Amsterdam, 1979. 
[86] 
E. L. Lawler, Recent results in the theory of machine scheduling, In: A. Bachem, M. Grötchel and B. Korte (eds), Mathematical Programming: The State of the ArtBonn 1982, Springer, BerlinNew York, (1983), 202234. 
[87] 
E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Erratum: Minimizing maximum lateness in a twomachine open shop, Maths. Operations Research, 7 (1982), p635. doi: 10.1287/moor.7.4.635. 
[88] 
E. L. Lawler, J. K. Lenstra and A. H. G. Rinnovy Kan, Minimizing maximum lateness in a twomachine open shop, Math. Operations Research, 6 (1981), 153158. doi: 10.1287/moor.6.1.153. 
[89] 
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, Sequencing and scheduling: Algorithms and complexity, In: S.C. Graves, A.H.G. Rinnooy Kan and P.H. Zipkin (Eds), Logistics of Production and Inventory, Handbooks in Operations Research and Management Science, 4, NorthHolland, Amsterdam, (1993), 445522. 
[90] 
D. Lei, Multiobjective production scheduling: A survey, International Journal of Advance Manufacturing Technology, 43 (2009), 926938. 
[91] 
J. K. Lenstra, Production Scheduling, Mathematisch Centrum, Amsterdam, 1977. 
[92] 
J. K. Lenstra, A. H. G. Rinnooy and P. Brucker, Complexity of machine scheduling problems, Annals of Discrete Mathematics, 1 (1977), 343362. 
[93] 
J. Y. T. Leung, H. Li and M. Pinedo, Scheduling orders for multiple product types with due dates related objectives, European Journal of Operational Research, 168 (2006), 370389. doi: 10.1016/j.ejor.2004.03.030. 
[94] 
J. Y. T. Leung and V. K. M. Yu, Heuristic for minimizing the number of late jobs on two processors, International Journal on Foundations of Computer Science, 5 (1995), 261279. 
[95] 
C. L. Li, T. C. E. Cheng and Z. L. Chen, Single machine scheduling to minimize the weighted number of early and tardy agreeable jobs, Computers and Operations Research, 22 (1995), 205219. 
[96] 
C. L. Li, A heuristic for parallel machine scheduling with agreeable due dates to minimize the number of late jobs, Computers and Operations Research, 22 (1995), 277283. 
[97] 
B. M. T. Lin and A. A. K. Jeng, Parallel machine batch scheduling to minimize the maximum lateness and the number of tardy jobs, International Journal of Production Economics, 91 (2004), 121134. 
[98] 
B. M. T. Lin and A. V. Kononov, Customer order scheduling to minimize the number of late jobs, European Journal of Operational Research, 183 (2007), 944948. 
[99] 
B. M. T. Lin, Scheduling in the twomachine flow shop with due date constraints, Journal of Production Economics, 70 (2001), 117123. 
[100] 
R. Linn and W. Zhang, Hybrid flow shop scheduling. a survey, Computers and Industrial Engineering, 37 (1999), 5761. 
[101] 
C. Y. Liu and R. L. Bulfin, Scheduling open shops with unit execution times to minimize functions of due dates, Operations Research, 36 (1988), 553559. doi: 10.1287/opre.36.4.553. 
[102] 
M. Liu and C. Wu, Scheduling algorithm based on evolutionary computing in identical parallel machine production line, Robotics and Computer Integrated Manufacturing, 19 (2003), 401407. 
[103] 
E. Lodree, W. Jang and C. M. Klein, A new rule for minimizing the weighted number of tardy jobs in dynamic flow shops, European Journal of Operational Research, 159 (2004), 258263. doi: 10.1016/S03772217(03)004041. 
[104] 
R. M'Hallah and R. L. Bulfin, Minimizing the weighted number of tardy jobs on parallel processors, European Journal of Operational Research, 160 (2005), 471484. doi: 10.1016/j.ejor.2003.06.027. 
[105] 
M. Mathirajan and A. J. Sivakumar, A literature review, classification and simple metaanalysis on scheduling of batch processors in semiconductor, International Journal of Advance Manufacturing Technology, 29 (2006), 9901001. 
[106] 
M. Middendorf and V. G. Timkovsky, Transversal graphs for partially ordered sets: Sequencing, merging and scheduling problems, Journal of Combinatorial Optimization, 3 (1999), 417435. doi: 10.1023/A:1009827520712. 
[107] 
J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs, Management Science, 15 (1968), 102109. 
[108] 
G. Mosheiov and D. Oron, Minimizing the number of tardy jobs on a proportionate flowshop with general positiondependent processing times, Computers and Operational Research, 39 (2012), 16011604. doi: 10.1016/j.cor.2011.09.011. 
[109] 
G. Mosheiov and A. Sarig, Minimum weighted number of tardy jobs on mmachine flowshop, European Journal of Operational Research, 201 (2010), 404408. doi: 10.1016/j.ejor.2009.03.018. 
[110] 
A. Nagar, J. Haddock and S. Heragu, Multiple and bicriteria scheduling: A literature survey, European Journal of Operational Research, 81 (1995), 88104. 
[111] 
C. T. Ng, T. C. E. Cheng and J. J. Yuan, Concurrent Open Shop Scheduling to Minimize the Weighted Number of Tardy Jobs, Journal of Scheduling, 6 (2003), 405412. doi: 10.1023/A:1024284828374. 
[112] 
H. Ohta and T. Nakatani, A heuristic job shop scheduling algorithm to minimize the total holding of completed and inprocess products subject to no tardy jobs, International Journal of Production Economics, 101 (2006), 1929. 
[113] 
M. Park and Y. Kim, Search heuristics for a parallel machine scheduling problem with ready times and due dates, Computers Industrial Engineering, 33 (1997), 793796. 
[114] 
C. N. Potts and M. V. Kovalyov, Scheduling with batching: A review, European Journal of Operational Research, 120 (2000), 228249. doi: 10.1016/S03772217(99)001538. 
[115] 
C. N. Potts and V. Wassenhove, Integrating scheduling with batching and lotsizing: A review of algorithms and complexity, Journal of Operations Research Society, 43 (1992), 395406. 
[116] 
T. A. Reomer, A note on the complexity of the concurrent open shop problem, Journal of Scheduling, 9 (2006), 389396. doi: 10.1007/s109510067042y. 
[117] 
A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations, Nijhoff, The Hague, 1976. doi: 10.1007/9781461343837. 
[118] 
A. J. RuizTorres, J. H. AblanedoRsas and J. C. Ho, Minimizing the number of tardy jobs in the flowshop problem with operational and resource flexibility, Computers and Operational Research, 37 (2010), 282291. doi: 10.1016/j.cor.2009.04.018. 
[119] 
A. J. RuizTorres and G. Centeno, Minimizing the number of late jobs for the permutation flowshop problem with secondary resources, Computers and Operational Research, 35 (2008), 12271249. doi: 10.1016/j.cor.2006.07.013. 
[120] 
A. J. RuizTorres, E. E. Enscore and R. R. Barton, Simulated annealing heuristics for the average flow time and number of tardy jobs bicriteria identical parallel machine problem, Computers and Industrial Engineering, 33 (1997), 257260. 
[121] 
A. J. RuizTorres, F. J. López and J. C. Ho, Scheduling uniform parallel machines subjected to a secondary resource to minimize the number of tardy jobs, European Journal of Operational Research, 179 (2007), 302315. 
[122] 
P. Senthilkumar and S. Narayanan, Literature review of single machine scheduling problem with uniform parallel machines, Intelligent Information Management, 2 (2010), 457474. 
[123] 
M. Sevaux and K. Sörensen, VNS/TS for a Parallel Machine Scheduling Problem, MECVNS: 18th Mini Euro Conference pm VNS, 2005. 
[124] 
M. Sevaux and P. Thomin, Heuristics and metaheuristics for a parallel machine scheduling problem: A computational evaluation, Proceedings of 4th Metaheuristics International Conference, (2001), 411415. 
[125] 
D. Shabtay and Y. Bensoussan, Maximizing the weighted number of justintime jobs in several two machine scheduling systems, Journal of Scheduling, 15 (2012), 3947. doi: 10.1007/s109510100204y. 
[126] 
D. Shabtay, Y. Bensoussan and M. Kaspi, A bicriteria approach to maximize the weighted number of justintime jobs and to minimize the total resource consumption cost in a twomachine flowshop scheduling system, International Journal of Production Economics, 136 (2012), 6774. 
[127] 
R. Sitters, Complexity of preemptive minsum scheduling on unrelated parallel machines, Journal of Algorithms, 57 (2005), 3748. doi: 10.1016/j.jalgor.2004.06.011. 
[128] 
Y. N. Sotskov, The complexity of shop scheduling problems with two or three jobs, European Journal of Operational Research, 53 (1991), 326336. 
[129] 
S. Sriram, C. Mala and N. P. Gopalan, Online Parallel Machine Scheduling with Hard Deadlines, International Journal of Recent Trends in Engineering, 2 (2009), 263265. 
[130] 
G. A. Süer, Minimizing the number of tardy jobs in multiperiod cell loading problems, Computers and Industrial Engineering, 33 (1997), 721724. 
[131] 
G. A. Süer, Z. Czajkiewicz and E. Baez, Minimizing the Number of Tardy Jobs in Identical Machine Scheduling, Proceedings of the 15th Conference on Computers and Industrial Engineering, Cocoa Beach, Florida, 1993. 
[132] 
G. A. Süer, F. Pico and A. Santiago, Identical machine scheduling to minimize the number of tardy jobs when lostsplitting is allowed, Computers Industrial Engineering, 33 (1997), 271280. 
[133] 
S. C. Sung and M. Vlach, JustInTime Scheduling on Parallel Machines, The European Operational Research Conference, Rotterdam, Netherlands, 2001. 
[134] 
V. T'Kindt, F. D. Croce and J. L. Bouquard, Enumerating of pareto optima for a flowshop scheduling problem with two criteria, Journal of Computing, 19 (2007), 6472. doi: 10.1287/ijoc.1050.0167. 
[135] 
V. G. Timkorsky, Is a unittime job shop not easier than identical parallel machines?, Discrete Applied Mathematics, 85 (1998), 149162. doi: 10.1016/S0166218X(98)000328. 
[136] 
V. G. Timkorsky, Identical parallel machines vs. unit time shops and preemptions vs. chains in scheduling complexity, European Journal of Operational Research, 149 (2003), 355376. doi: 10.1016/S03772217(02)007671. 
[137] 
H. Ucar and M. F. Tasgetiren, A particle swarm optimization algorithm for permutation flow shop sequencing problem with the number of tardy jobs criterion, Proceedings of 5th International Symposium of Intelligent Manufacturing Systems, Sakarya, Turkey, (2006), 11101120. 
[138] 
J. M. Van Den Akker, J. A. Hoogeveen and S. L. Van De Velde, Parallel machine scheduling by column generation, Operations Research, 47 (1999), 862872. doi: 10.1287/opre.47.6.862. 
[139] 
M. Van der Akker and H. Hoogeveen, Minimizing the Number of Tardy Jobs, In J.Y.T. Leung (Ed), Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Boca Raton: Chapman and Hall/CRC, 2004. 
[140] 
F. VargasNieto and J. R. MontoyaTorres, Scheduling a ThermalPrinted Label Manufacturing Plant Using an Evolutionary Algorithm, 19th Proceedings International Conference on Production Research (ICPR19), Valparaiso, Chile, 2007. 
[141] 
E. Wagneur and C. Sriskandarajah, Open shops with job overlap, European Journal of Operational Research, 71 (1993), 366378. 
[142] 
I. L. Wang, Y. C. Wang and C. W. Chen, Scheduling unrelated parallel machines in semiconductor manufacturing by problem reduction and local search heuristics, Flexible Services and Manufacturing Journal, 25 (2012), 343366. 
[143] 
J. B. Wang and Z. Q. Xia, No wait or no idle permutation flowshop scheduling with dominating machines, Journal of Applied Mathematics and Computing, 17 (2005), 419432. doi: 10.1007/BF02936066. 
[144] 
S. Webster and K. R. Baker, Scheduling groups of jobs on a single machine, Operations Research, 43 (1995), 692703. doi: 10.1287/opre.43.4.692. 
[145] 
S. Xiang, G. Tang and T. C. E. Cheng, Solvable cases of permutation flowshop scheduling with dominating machines, International Journal of Production Economics, 66 (2000), 5357. 
[146] 
W. H. Yang and C. J. Liao, Survey of scheduling research involving setup times, International Journal of Systems Sciences, 30 (1999), 143155. 
[147] 
B. P. C. Yen and G. Wan, Single machine bicriteria scheduling: A survey, Industrial Engineering: Theory, Applications and Practice, 10 (2003), 222231. 
[148] 
W. K. Yeung, C. Oğuz and T. C. E. Cheng, Twomachine flow shop scheduling with common due window to minimize weighted number of early and tardy jobs, Naval Research Logistics, 56 (2009), 593599. doi: 10.1002/nav.20356. 
show all references
References:
[1] 
M. O. Adamu and O. Abass, Parallel machine scheduling to maximize the weighted number of justintime jobs, Journal of Applied Science and Technology, 15 (2010), 2734. 
[2] 
M. O. Adamu and A. Adewumi, Metaheuristics for scheduling on parallel machines to minimize the weighted number of early and tardy jobs, International Journal of Physical Sciences, 7 (2012), 16411652. 
[3] 
M. O. Adamu and A. Adewumi, Single machine review to minimize weighted number of tardy jobs, Journal of Industrial and Management Optimization, 10 (2014), 219241. doi: 10.3934/jimo.2014.10.219. 
[4] 
M. O. Adamu, N. Budlender and G. A. Idowu, A Note on justintime scheduling on flow shop machines, Journal of the Nigerian Mathematical Society, 33 (2014), 321331. 
[5] 
R. H. Ahmadi and U. Bagchi, Coordinated Scheduling of Customer Orders, Updated Paper, Anderson School of UCLA, 1997. 
[6] 
S. Albers and P. Brucker, The complexity of one machine batching problem, Discrete Applied Mathematics, 47 (1993), 87107. doi: 10.1016/0166218X(93)900853. 
[7] 
A. Allahverdi, J. N. D. Gupta and T. Aldowaisan, A review of scheduling research involving setup considerations, OMEGA The International Journal of Management Science, 27 (1999), 219239. 
[8] 
A. Allahverdi, C. T. Ng, T. C. E. Cheng and M. Y. Kovalyov., A survey of scheduling problems with setup times or costs, European Journal of Operational Research, 187 (2008), 9851032. doi: 10.1016/j.ejor.2006.06.060. 
[9] 
H. Allaoui and A. Artiba, Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints, Computer and Industrial Engineering, 47 (2004), 431450. 
[10] 
K. R. Baker and G. D. Scudder, Scheduling with earliness and tardiness penalties: A review, Operations Research, 38 (1990), 2236. doi: 10.1287/opre.38.1.22. 
[11] 
M. F. Baki and R. G. Vickson, One operator, two machine open shop and flow shop problems with setup times for machines and weighted number of tardy jobs objective, Optimization Methods and Software, 19 (2004), 165178. doi: 10.1080/10556780410001657653. 
[12] 
P. Baptiste, Batching identical jobs, Mathematical Methods of Operations Research, 52 (2000), 355367. doi: 10.1007/s001860000088. 
[13] 
P. Baptiste, Preemptive Scheduling of Identical Machines, Technical Report, Universite de Technologie de Campiegne, France, 2000. 
[14] 
P. Baptiste, On minimizing the weighted number of late jobs in unit execution time open shops, European Journal of Operational Research, 149 (2003), 344354. doi: 10.1016/S03772217(02)007592. 
[15] 
P. Baptiste, P. Brucker, S. Knust and V. G. Timkovsky, Ten notes on equal processing time scheduling, 40R, 2 (2004), 111127. doi: 10.1007/s1028800300244. 
[16] 
P. Baptiste, A. Jouglet, C. L. Pape and W. Nuijten., A Constraint Based Approach to Minimize the Weighted Number of Late Jobs on Parallel Machines, Technical Report 2000/228, UMR, CNRS 6599, Heudiasyc, France, 2000. 
[17] 
O. J. Boxma and F. G. Forst, Minimizing the expected weighted number of tardy jobs in stochastic flow shops, Operations Research Letters, 5 (1986), 119126. doi: 10.1016/01676377(86)900842. 
[18] 
P. Brucker, Scheduling Algorithms, Springer  Verlag, Berlin, First edition, 1995. 
[19] 
P. Brucker and S. Knust, Complexity Results for Scheduling Problems, 2011, http://www.mathematik.uniosnabrueck.de/research/OR/class/ 
[20] 
P. Brucker and S. Knust, Complexity results for singlemachine problems with positive finishstart timelags, Computing, 63 (1999), 299316. doi: 10.1007/s006070050036. 
[21] 
P. Brucker and A. Kraemer, Polynomial algorithms for resource  constrainted and multiprocessor task scheduling problems, European Journal of Operational Research, 90 (1996), 214226. 
[22] 
P. Brucker, T. C. E. Cheng, S. Knust and N. V. Shakhlevich, Complexity results for flowshop and open shop problems with transportation delays, Annals of Operations Research, 129 (2004), 81106. doi: 10.1023/B:ANOR.0000030683.64615.c8. 
[23] 
P. Brucker, C. DhaenensFlipo, S. Knust, S. A. Kravchenko and F. Werner, Complexity results for parallel machine problems with a single server, Journal of Scheduling, 5 (2002), 429457. doi: 10.1002/jos.120. 
[24] 
P. Brucker, A. Gladky, H. Hoogeveen, M. V. Kovalyov, C. N. Potts, T. Tautenhahn and S. L. Van De Velde, Scheduling a batching machine, Journal of Scheduling, 1 (1998), 3154. doi: 10.1002/(SICI)10991425(199806)1:1<31::AIDJOS4>3.0.CO;2R. 
[25] 
P. Brucker, S. Heitmann and J. Hurink., How useful are preemptive schedule?, Operations Research Letters, 31 (2003), 129136. doi: 10.1016/S01676377(02)002201. 
[26] 
P. Brucker, B. Jurisch, T. Tautenhahn and F. Werner, Scheduling unit time open shops to minimize the weighted number of late jobs, Operations Research Letters, 14 (1993), 245250. doi: 10.1016/01676377(93)90088X. 
[27] 
P. Brucker, B. Jurish and A. Krämer, Complexity of scheduling problems with multipurpose machines, Annals of Operations Research, 70 (1997), 5773. doi: 10.1023/A:1018950911030. 
[28] 
P. Brucker, S. A. Kravchenko and Y. N. Sotskov, On the complexity of two machine jobshop scheduling with regular objective functions, OR Spektrum, 19 (1997), 510. doi: 10.1007/BF01539799. 
[29] 
R. L. Bulfin and R. M'Hallah, Minimizing the weighted number of tardy jobs on a twomachine flow shop, Computers and Operational Research, 30 (2003), 18871900. doi: 10.1016/S03050548(02)001144. 
[30] 
O. Cepek and S. C. Sung, A quadratic time algorithm to maximize the number of justintime jobs on identical parallel machines, Computers and Operational Research, 32 (2005), 32653271. doi: 10.1016/j.cor.2004.05.011. 
[31] 
C. L. Chen, Iterated hybrid metaheuristics algorithms for unrelated parallel machines problem with unequal ready times and sequencedependent setup times, The International Journal of Advanced Manufacturing Technology, 60 (2012), 693705. 
[32] 
C. L. Chen and R. L. Bulfin, Complexity of single machine multicriteria scheduling problems, European Journal of Operational Research, 70 (1993), 115125. 
[33] 
Z. Chen and W. B. Powel, Solving parallel machine scheduling problems by column generation, INFORMS Journal on Computing, 11 (1999), 7894. doi: 10.1287/ijoc.11.1.78. 
[34] 
Z. L. Chen and W. B. Powell, Exact algorithms for scheduling multiple families of jobs on parallel machines, Naval Research Logistics, 50 (2003), 823840. doi: 10.1002/nav.10091. 
[35] 
T. C. E. Cheng and M. Gupta, Survey of scheduling research involving due date assignment, European Journal of Operational Research, 38 (1989), 156166. doi: 10.1016/03772217(89)901008. 
[36] 
T. C. E. Cheng, J. N. D. Gupta and G. Wang, A review of flowshop scheduling research with setup times, Production and Operations Management, 9 (2000), 262282. 
[37] 
T. C. E. Cheng, Q. Wang and J. Yuan, Customer Order Scheduling on Multiple Facilities, Private Communication, 2006. 
[38] 
T. C. Chiang and L. C. Fu, Using a family of critical ratiobased approaches to minimize the number of tardy jobs in the job shop with sequence dependent setup times, European Journal of Operational Research, 196 (2009), 7892. 
[39] 
B. C. Choi and S. H. Yoon, Maximizing the weighted number of justintime jobs in flowshop scheduling, Journal of Scheduling, 10 (2007), 237243. doi: 10.1007/s109510070030z. 
[40] 
H. S. Choi and D. H. Lee, A branch and bound algorithm for two stage flow shops: minimizing the number of tardy jobs, Journal of the Korean Institute of Industrial Engineers, 33 (2007), 213220. 
[41] 
H. S. Choi and D. H. Lee, Scheduling algorithms to minimize the number of tardy jobs in twostage hybrid flow shops, Computers and Industrial Engineering, 56 (2009), 113120. 
[42] 
C. Chu, J. M. Proth and S. Sethi, Heuristic procedure for minimizing makespan and the number of required pallets, European Journal of Operational Research, 86 (1995), 491502. 
[43] 
R. W. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling, AddisonWesley, Reading, M.A., 1967. 
[44] 
F. D. Croce, J. N. D. Gupta and R. Tadei, Minimizing tardy jobs in a flowshop with common due date, European Journal of Operational Research, 120 (2000), 375381. doi: 10.1016/S03772217(99)001642. 
[45] 
S. DauzèrePérès and M. Sevaux, Using Lagrangean Relaxation to Minimize the (Weighted) Number of Late Jobs on a Single Machine, National Contribution IFORS 1999, Beijing, P.R. of China (Technical Report 99/8 Ecole des Minesdes Nantes, France), 1999. 
[46] 
C. Desprez, C. Chu and F. Chu, A genetic algorithm for minimizing the weighted number of tardy jobs, Proceedings of IEEE, (2006), 12711276. 
[47] 
C. Desprez, F. Chu and C. Chu, Minimizing the weighted number of tardy jobs in a hybrid flow shop with genetic algorithm, International Journal of Computer Integrated Manufacturing, 22 (2009), 745757. 
[48] 
M. J. Dessouky, B. J. Lageweg, J. K. Lenstra and S. L. Vande Velde, Scheduling identical jobs on uniform parallel machines, Statistica Neerlandica, 44 (1990), 115123. doi: 10.1111/j.14679574.1990.tb01276.x. 
[49] 
E. Dhouib, J. Teghem and T. Loukil, Minimizing the number of tardy jobs in a permutation flowshop scheduling problem with setup times and time lags constraints, Journal of Mathematical Modelling and Algorithms in Operations Research, 12 (2013), 8599. 
[50] 
J. Du and J. Y. T. Leung, Minimizing the number of late jobs on unrelated machines, Operations Research Letter, 10 (1991), 153158. doi: 10.1016/01676377(91)90032K. 
[51] 
J. Du, J. Y. T. Leung and C. S. Wong, Minimizing the number of late jobs with release time constraint, Journal of Combinatorial Mathematics and Combinatorial Computing, 11 (1992), 97107. 
[52] 
S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop, Ellis Harwood, England, 1982. 
[53] 
G. Galambos and G. J. Woeginger, Minimizing the weighted number of late jobs in uet open shops, Zeitschrift fur Operations Research ZOR  Methematical Methods of Operations Research, 41 (1995), 109114. doi: 10.1007/BF01415068. 
[54] 
M. R. Garey and D. S. Johnson, Strong NPcompleteness results: motivation, examples and implications, Journal of the Association for Computing Machinery, 25 (1978), 499508. doi: 10.1145/322077.322090. 
[55] 
M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP Completeness, Freeman, San Francisco, 1979. 
[56] 
A. A. Gladky, On complexity of minimizing weighted number of late jobs in unit time open shops, Discrete Applied Mathematics, 74 (1997), 197201. doi: 10.1016/S0166218X(97)814485. 
[57] 
R. L. Graham, E. L. Lawler, T. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 5 (1979), 287326. doi: 10.1016/S01675060(08)70356X. 
[58] 
E. Gersl, B. Mor and G. Mosheiov, A note: Maximizing the weighted number of justintime jobs on a proportionate flowshop, Information Procesing Letters, 115 (2015), 159162. doi: 10.1016/j.ipl.2014.09.004. 
[59] 
S. Guirchoun, A. Souhkal and P. Martineau, Complexity results for parallel machine scheduling problems with a server in computer systems, In:Processings of the 2nd Multidisciplinary International Conference on Scheduling: Theory and Application, New York, USA, (2005), 232236. 
[60] 
J. N. D. Gupta and A. M. A. Hariri, Integrating Job Selection and Scheduling in a Flowshop, Working Paper, Department of Management, Ball State University, Muncie, IN., 1994. 
[61] 
J. N. D. Gupta and A. M. A. Hariri, Two machine flow shop to minimize number of tardy jobs, Journal of Operational Research Society, 48 (1997), 212220. 
[62] 
J. N. D. Gupta and E. A. Tunc, Minimizing tardy jobs in a twostage hybrid flowshop, International Journal of Production Research, 36 (1998), 23972417. 
[63] 
N. G. Hall, C. N. Potts and C. Sriskandarajah, Parallel machine scheduling with a common server, Discrete Applied Mathematics, 102 (2000), 223243. doi: 10.1016/S0166218X(99)002061. 
[64] 
A. M. A. Hariri and C. N. Potts, A branch and bound algorithm to minimize number of late jobs in a permutation flow shop, European Journal of Operational Research, 38 (1989), 228237. doi: 10.1016/03772217(89)901082. 
[65] 
K. Hiraishi, E. Levner and M. Vlach, Scheduling of parallel identical machines to maximize the weighted number of justintime jobs, Computers and Operations Research, 29 (2002), 841848. doi: 10.1016/S03050548(00)000861. 
[66] 
J. C. Ho and Y. L. Chang, Minimizing the number of tardy jobs for m parallel machines, European Journal of Operational Research, 84 (1995), 343355. 
[67] 
J. C. Ho and J. N. D. Gupta, Flowshop Scheduling with Dominant machine, Computers and Operations Research, 22 (1995), 237246. 
[68] 
H. Hoogeveen, Multicriteria scheduling, European Journal of Operational Research, 167 (2005), 592623. doi: 10.1016/j.ejor.2004.07.011. 
[69] 
H. L. Huang and B. M. T. Lin, Concurrent open shop problem to minimize the weighted number of late jobs, Multiprocessor Scheduling: Theory and Applications, Itech Education and Publishing, Vienna, (2007), 215220. 
[70] 
A. S. Jain and S. Meeran, Deterministic job shop scheduling: Past, present and future, European Journal of Operational Research, 113 (1999), 390434. 
[71] 
A. Janiak, W. A. Janiak and R. Januszkiewicz, Algorithms for parallel processor scheduling with distinct due windows and unittime jobs, Bulletin of the Polish Academy of Sciences Technical Sciences, 57 (2009), 209215. 
[72] 
F. Jolai, M. S. Amalnick and M. Alinaghian, A hybrid memetic algorithm for maximizing the weighted number of justintime jobs on unrelated parallel machines, Journal of Intelligence Manufacturing, 22 (2011), 247261. 
[73] 
J. Josefowska, B. Jurisch and W. Kubiak, Scheduling shops to minimize the weighted number of late jobs, Operations Research Letters, 10 (1994), 2733. 
[74] 
J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines and dual criteria, OttovonGuerickeUniversitat Magdeburg, Preprint, 28/05 (2005), 123. 
[75] 
J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, Constructive tabu search algorithms for hybrid flowshop problems with unrelated parallel machines and setup times, International Journal of Computational Science, 1 (2007), 204214. 
[76] 
S. Knust, Shopscheduling problems with transportation, PhD Thesis, Universität Osnabrück, Fachbereich Mathematik/Informatik, 1999. 
[77] 
A. Krämer, Scheduling Multi processor Tasks in Dedicated Processors, PhD Thesis, Universität, Osnabrück, Fachbereich Mathematik/Informatik, 1995. 
[78] 
S. Kravchenko and F. Werner, Parallel machine problems with equal processing times: A survey, J. Sched., 14 (2011), 435444. doi: 10.1007/s1095101102313. 
[79] 
S. A. Kravchenko, Minimizing the number of late jobs for the twomachine unittime job shop scheduling problem, Discrete Applied Mathematics, 98 (2000), 209217. doi: 10.1016/S0166218X(99)001651. 
[80] 
S. A. Kravchenko, On the complexity of minimizing the number of late jobs in unit time open shop, Discrete Applied Mathematics, 100 (2000), 127132. doi: 10.1016/S0166218X(99)002024. 
[81] 
W. Kubiak, C. Sriskandarajah and K. Zaras, A note on the complexity of open shop scheduling problems, INFOR, 29 (1991), 284294. 
[82] 
A. Lann and G. Mosheiov, A note on the maximum number of ontime jobs on parallel identical machines, Computers and Operations Research, 30 (2003), 17451749. doi: 10.1016/S03050548(02)000849. 
[83] 
E. L. Lawler and C. U. Martel, Preemptive scheduling of two uniform machines to minimize the number of late jobs, Operations Research, 37 (1989), 314318. doi: 10.1287/opre.37.2.314. 
[84] 
E. L. Lawler and J. M. Moore, A functional equation and its applications to resource allocation and sequencing problems, Management Science, 16 (1969), 7784. 
[85] 
E. L. Lawler, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems, Report BW 106/79, Math. Centre, Amsterdam, 1979. 
[86] 
E. L. Lawler, Recent results in the theory of machine scheduling, In: A. Bachem, M. Grötchel and B. Korte (eds), Mathematical Programming: The State of the ArtBonn 1982, Springer, BerlinNew York, (1983), 202234. 
[87] 
E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Erratum: Minimizing maximum lateness in a twomachine open shop, Maths. Operations Research, 7 (1982), p635. doi: 10.1287/moor.7.4.635. 
[88] 
E. L. Lawler, J. K. Lenstra and A. H. G. Rinnovy Kan, Minimizing maximum lateness in a twomachine open shop, Math. Operations Research, 6 (1981), 153158. doi: 10.1287/moor.6.1.153. 
[89] 
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, Sequencing and scheduling: Algorithms and complexity, In: S.C. Graves, A.H.G. Rinnooy Kan and P.H. Zipkin (Eds), Logistics of Production and Inventory, Handbooks in Operations Research and Management Science, 4, NorthHolland, Amsterdam, (1993), 445522. 
[90] 
D. Lei, Multiobjective production scheduling: A survey, International Journal of Advance Manufacturing Technology, 43 (2009), 926938. 
[91] 
J. K. Lenstra, Production Scheduling, Mathematisch Centrum, Amsterdam, 1977. 
[92] 
J. K. Lenstra, A. H. G. Rinnooy and P. Brucker, Complexity of machine scheduling problems, Annals of Discrete Mathematics, 1 (1977), 343362. 
[93] 
J. Y. T. Leung, H. Li and M. Pinedo, Scheduling orders for multiple product types with due dates related objectives, European Journal of Operational Research, 168 (2006), 370389. doi: 10.1016/j.ejor.2004.03.030. 
[94] 
J. Y. T. Leung and V. K. M. Yu, Heuristic for minimizing the number of late jobs on two processors, International Journal on Foundations of Computer Science, 5 (1995), 261279. 
[95] 
C. L. Li, T. C. E. Cheng and Z. L. Chen, Single machine scheduling to minimize the weighted number of early and tardy agreeable jobs, Computers and Operations Research, 22 (1995), 205219. 
[96] 
C. L. Li, A heuristic for parallel machine scheduling with agreeable due dates to minimize the number of late jobs, Computers and Operations Research, 22 (1995), 277283. 
[97] 
B. M. T. Lin and A. A. K. Jeng, Parallel machine batch scheduling to minimize the maximum lateness and the number of tardy jobs, International Journal of Production Economics, 91 (2004), 121134. 
[98] 
B. M. T. Lin and A. V. Kononov, Customer order scheduling to minimize the number of late jobs, European Journal of Operational Research, 183 (2007), 944948. 
[99] 
B. M. T. Lin, Scheduling in the twomachine flow shop with due date constraints, Journal of Production Economics, 70 (2001), 117123. 
[100] 
R. Linn and W. Zhang, Hybrid flow shop scheduling. a survey, Computers and Industrial Engineering, 37 (1999), 5761. 
[101] 
C. Y. Liu and R. L. Bulfin, Scheduling open shops with unit execution times to minimize functions of due dates, Operations Research, 36 (1988), 553559. doi: 10.1287/opre.36.4.553. 
[102] 
M. Liu and C. Wu, Scheduling algorithm based on evolutionary computing in identical parallel machine production line, Robotics and Computer Integrated Manufacturing, 19 (2003), 401407. 
[103] 
E. Lodree, W. Jang and C. M. Klein, A new rule for minimizing the weighted number of tardy jobs in dynamic flow shops, European Journal of Operational Research, 159 (2004), 258263. doi: 10.1016/S03772217(03)004041. 
[104] 
R. M'Hallah and R. L. Bulfin, Minimizing the weighted number of tardy jobs on parallel processors, European Journal of Operational Research, 160 (2005), 471484. doi: 10.1016/j.ejor.2003.06.027. 
[105] 
M. Mathirajan and A. J. Sivakumar, A literature review, classification and simple metaanalysis on scheduling of batch processors in semiconductor, International Journal of Advance Manufacturing Technology, 29 (2006), 9901001. 
[106] 
M. Middendorf and V. G. Timkovsky, Transversal graphs for partially ordered sets: Sequencing, merging and scheduling problems, Journal of Combinatorial Optimization, 3 (1999), 417435. doi: 10.1023/A:1009827520712. 
[107] 
J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs, Management Science, 15 (1968), 102109. 
[108] 
G. Mosheiov and D. Oron, Minimizing the number of tardy jobs on a proportionate flowshop with general positiondependent processing times, Computers and Operational Research, 39 (2012), 16011604. doi: 10.1016/j.cor.2011.09.011. 
[109] 
G. Mosheiov and A. Sarig, Minimum weighted number of tardy jobs on mmachine flowshop, European Journal of Operational Research, 201 (2010), 404408. doi: 10.1016/j.ejor.2009.03.018. 
[110] 
A. Nagar, J. Haddock and S. Heragu, Multiple and bicriteria scheduling: A literature survey, European Journal of Operational Research, 81 (1995), 88104. 
[111] 
C. T. Ng, T. C. E. Cheng and J. J. Yuan, Concurrent Open Shop Scheduling to Minimize the Weighted Number of Tardy Jobs, Journal of Scheduling, 6 (2003), 405412. doi: 10.1023/A:1024284828374. 
[112] 
H. Ohta and T. Nakatani, A heuristic job shop scheduling algorithm to minimize the total holding of completed and inprocess products subject to no tardy jobs, International Journal of Production Economics, 101 (2006), 1929. 
[113] 
M. Park and Y. Kim, Search heuristics for a parallel machine scheduling problem with ready times and due dates, Computers Industrial Engineering, 33 (1997), 793796. 
[114] 
C. N. Potts and M. V. Kovalyov, Scheduling with batching: A review, European Journal of Operational Research, 120 (2000), 228249. doi: 10.1016/S03772217(99)001538. 
[115] 
C. N. Potts and V. Wassenhove, Integrating scheduling with batching and lotsizing: A review of algorithms and complexity, Journal of Operations Research Society, 43 (1992), 395406. 
[116] 
T. A. Reomer, A note on the complexity of the concurrent open shop problem, Journal of Scheduling, 9 (2006), 389396. doi: 10.1007/s109510067042y. 
[117] 
A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations, Nijhoff, The Hague, 1976. doi: 10.1007/9781461343837. 
[118] 
A. J. RuizTorres, J. H. AblanedoRsas and J. C. Ho, Minimizing the number of tardy jobs in the flowshop problem with operational and resource flexibility, Computers and Operational Research, 37 (2010), 282291. doi: 10.1016/j.cor.2009.04.018. 
[119] 
A. J. RuizTorres and G. Centeno, Minimizing the number of late jobs for the permutation flowshop problem with secondary resources, Computers and Operational Research, 35 (2008), 12271249. doi: 10.1016/j.cor.2006.07.013. 
[120] 
A. J. RuizTorres, E. E. Enscore and R. R. Barton, Simulated annealing heuristics for the average flow time and number of tardy jobs bicriteria identical parallel machine problem, Computers and Industrial Engineering, 33 (1997), 257260. 
[121] 
A. J. RuizTorres, F. J. López and J. C. Ho, Scheduling uniform parallel machines subjected to a secondary resource to minimize the number of tardy jobs, European Journal of Operational Research, 179 (2007), 302315. 
[122] 
P. Senthilkumar and S. Narayanan, Literature review of single machine scheduling problem with uniform parallel machines, Intelligent Information Management, 2 (2010), 457474. 
[123] 
M. Sevaux and K. Sörensen, VNS/TS for a Parallel Machine Scheduling Problem, MECVNS: 18th Mini Euro Conference pm VNS, 2005. 
[124] 
M. Sevaux and P. Thomin, Heuristics and metaheuristics for a parallel machine scheduling problem: A computational evaluation, Proceedings of 4th Metaheuristics International Conference, (2001), 411415. 
[125] 
D. Shabtay and Y. Bensoussan, Maximizing the weighted number of justintime jobs in several two machine scheduling systems, Journal of Scheduling, 15 (2012), 3947. doi: 10.1007/s109510100204y. 
[126] 
D. Shabtay, Y. Bensoussan and M. Kaspi, A bicriteria approach to maximize the weighted number of justintime jobs and to minimize the total resource consumption cost in a twomachine flowshop scheduling system, International Journal of Production Economics, 136 (2012), 6774. 
[127] 
R. Sitters, Complexity of preemptive minsum scheduling on unrelated parallel machines, Journal of Algorithms, 57 (2005), 3748. doi: 10.1016/j.jalgor.2004.06.011. 
[128] 
Y. N. Sotskov, The complexity of shop scheduling problems with two or three jobs, European Journal of Operational Research, 53 (1991), 326336. 
[129] 
S. Sriram, C. Mala and N. P. Gopalan, Online Parallel Machine Scheduling with Hard Deadlines, International Journal of Recent Trends in Engineering, 2 (2009), 263265. 
[130] 
G. A. Süer, Minimizing the number of tardy jobs in multiperiod cell loading problems, Computers and Industrial Engineering, 33 (1997), 721724. 
[131] 
G. A. Süer, Z. Czajkiewicz and E. Baez, Minimizing the Number of Tardy Jobs in Identical Machine Scheduling, Proceedings of the 15th Conference on Computers and Industrial Engineering, Cocoa Beach, Florida, 1993. 
[132] 
G. A. Süer, F. Pico and A. Santiago, Identical machine scheduling to minimize the number of tardy jobs when lostsplitting is allowed, Computers Industrial Engineering, 33 (1997), 271280. 
[133] 
S. C. Sung and M. Vlach, JustInTime Scheduling on Parallel Machines, The European Operational Research Conference, Rotterdam, Netherlands, 2001. 
[134] 
V. T'Kindt, F. D. Croce and J. L. Bouquard, Enumerating of pareto optima for a flowshop scheduling problem with two criteria, Journal of Computing, 19 (2007), 6472. doi: 10.1287/ijoc.1050.0167. 
[135] 
V. G. Timkorsky, Is a unittime job shop not easier than identical parallel machines?, Discrete Applied Mathematics, 85 (1998), 149162. doi: 10.1016/S0166218X(98)000328. 
[136] 
V. G. Timkorsky, Identical parallel machines vs. unit time shops and preemptions vs. chains in scheduling complexity, European Journal of Operational Research, 149 (2003), 355376. doi: 10.1016/S03772217(02)007671. 
[137] 
H. Ucar and M. F. Tasgetiren, A particle swarm optimization algorithm for permutation flow shop sequencing problem with the number of tardy jobs criterion, Proceedings of 5th International Symposium of Intelligent Manufacturing Systems, Sakarya, Turkey, (2006), 11101120. 
[138] 
J. M. Van Den Akker, J. A. Hoogeveen and S. L. Van De Velde, Parallel machine scheduling by column generation, Operations Research, 47 (1999), 862872. doi: 10.1287/opre.47.6.862. 
[139] 
M. Van der Akker and H. Hoogeveen, Minimizing the Number of Tardy Jobs, In J.Y.T. Leung (Ed), Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Boca Raton: Chapman and Hall/CRC, 2004. 
[140] 
F. VargasNieto and J. R. MontoyaTorres, Scheduling a ThermalPrinted Label Manufacturing Plant Using an Evolutionary Algorithm, 19th Proceedings International Conference on Production Research (ICPR19), Valparaiso, Chile, 2007. 
[141] 
E. Wagneur and C. Sriskandarajah, Open shops with job overlap, European Journal of Operational Research, 71 (1993), 366378. 
[142] 
I. L. Wang, Y. C. Wang and C. W. Chen, Scheduling unrelated parallel machines in semiconductor manufacturing by problem reduction and local search heuristics, Flexible Services and Manufacturing Journal, 25 (2012), 343366. 
[143] 
J. B. Wang and Z. Q. Xia, No wait or no idle permutation flowshop scheduling with dominating machines, Journal of Applied Mathematics and Computing, 17 (2005), 419432. doi: 10.1007/BF02936066. 
[144] 
S. Webster and K. R. Baker, Scheduling groups of jobs on a single machine, Operations Research, 43 (1995), 692703. doi: 10.1287/opre.43.4.692. 
[145] 
S. Xiang, G. Tang and T. C. E. Cheng, Solvable cases of permutation flowshop scheduling with dominating machines, International Journal of Production Economics, 66 (2000), 5357. 
[146] 
W. H. Yang and C. J. Liao, Survey of scheduling research involving setup times, International Journal of Systems Sciences, 30 (1999), 143155. 
[147] 
B. P. C. Yen and G. Wan, Single machine bicriteria scheduling: A survey, Industrial Engineering: Theory, Applications and Practice, 10 (2003), 222231. 
[148] 
W. K. Yeung, C. Oğuz and T. C. E. Cheng, Twomachine flow shop scheduling with common due window to minimize weighted number of early and tardy jobs, Naval Research Logistics, 56 (2009), 593599. doi: 10.1002/nav.20356. 
[1] 
Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A prioritybased genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 13911415. doi: 10.3934/jimo.2016.12.1391 
[2] 
Ethel Mokotoff. Algorithms for bicriteria minimization in the permutation flow shop scheduling problem. Journal of Industrial and Management Optimization, 2011, 7 (1) : 253282. doi: 10.3934/jimo.2011.7.253 
[3] 
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the jobshop scheduling problem. Journal of Industrial and Management Optimization, 2021, 17 (2) : 533548. doi: 10.3934/jimo.2019122 
[4] 
Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. VegaMejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible jobshop scheduling with operation and processing flexibility. Journal of Industrial and Management Optimization, 2020, 16 (6) : 29432969. doi: 10.3934/jimo.2019088 
[5] 
Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (2) : 703717. doi: 10.3934/jimo.2016.12.703 
[6] 
Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGAII and local search algorithm. Journal of Industrial and Management Optimization, 2020, 16 (4) : 18011834. doi: 10.3934/jimo.2019030 
[7] 
Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai. An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of Industrial and Management Optimization, 2017, 13 (4) : 20152031. doi: 10.3934/jimo.2017029 
[8] 
Mostafa Abouei Ardakan, A. Kourank Beheshti, S. Hamid Mirmohammadi, Hamed Davari Ardakani. A hybrid metaheuristic algorithm to minimize the number of tardy jobs in a dynamic twomachine flow shop problem. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 465480. doi: 10.3934/naco.2017029 
[9] 
Zhichao Geng, Jinjiang Yuan. Scheduling family jobs on an unbounded parallelbatch machine to minimize makespan and maximum flow time. Journal of Industrial and Management Optimization, 2018, 14 (4) : 14791500. doi: 10.3934/jimo.2018017 
[10] 
Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial and Management Optimization, 2014, 10 (1) : 259273. doi: 10.3934/jimo.2014.10.259 
[11] 
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallelmachine scheduling in shared manufacturing. Journal of Industrial and Management Optimization, 2022, 18 (1) : 681691. doi: 10.3934/jimo.2020174 
[12] 
Jie Gao, Juan Zou, Xiaoxuan Cheng. Machine scheduling with job rejection and DeJong's learning effect. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022024 
[13] 
Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial and Management Optimization, 2014, 10 (2) : 613620. doi: 10.3934/jimo.2014.10.613 
[14] 
Alireza Goli, Taha Keshavarz. Justintime scheduling in identical parallel machine sequencedependent group scheduling problem. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021124 
[15] 
Yang Woo Shin, Dug Hee Moon. Throughput of flow lines with unreliable parallelmachine workstations and blocking. Journal of Industrial and Management Optimization, 2017, 13 (2) : 901916. doi: 10.3934/jimo.2016052 
[16] 
Bin Zheng, Min Fan, Mengqi Liu, ShangChia Liu, Yunqiang Yin. Parallelmachine scheduling with potential disruption and positionaldependent processing times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 697711. doi: 10.3934/jimo.2016041 
[17] 
Reza Alizadeh Foroutan, Javad Rezaeian, Milad Shafipour. Biobjective unrelated parallel machines scheduling problem with worker allocation and sequence dependent setup times considering machine eligibility and precedence constraints. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021190 
[18] 
Tapabrata Ray, Ruhul Sarker. EA for solving combined machine layout and job assignment problems. Journal of Industrial and Management Optimization, 2008, 4 (3) : 631646. doi: 10.3934/jimo.2008.4.631 
[19] 
M. Ramasubramaniam, M. Mathirajan. A solution framework for scheduling a BPM with nonidentical job dimensions. Journal of Industrial and Management Optimization, 2007, 3 (3) : 445456. doi: 10.3934/jimo.2007.3.445 
[20] 
Chengwen Jiao, Qi Feng. Research on the parallel–batch scheduling with linearly lookahead model. Journal of Industrial and Management Optimization, 2021, 17 (6) : 35513558. doi: 10.3934/jimo.2020132 
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]