• Previous Article
    Differential optimization in finite-dimensional spaces
  • JIMO Home
  • This Issue
  • Next Article
    System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy
October  2016, 12(4): 1465-1493. doi: 10.3934/jimo.2016.12.1465

Minimizing the weighted number of tardy jobs on multiple machines: A review

1. 

Department of Mathematics, University of Lagos, Akoka, Yaba, Lagos

2. 

School of Mathematics, Statistics & Computer Science, University of Kwazulu-Natal, Private Bag X5400, Durban, 4000

Received  March 2015 Revised  July 2015 Published  January 2016

We provide an overview of the history, the methods and the people who researched on minimizing the (weighted) number of tardy jobs as a performance measure. The review presents cases on multiple machines: parallel machines (including the identical, uniform and unrelated machines, flow shop, job shop and the open shop). The literature is divided into various sections for proper categorization. This includes setup time, preemption, batching, on-line and off-line scheduling, and other classifications. The complexity status of the various classifications is enumerated with its results and methods. Possible extension for future work is also highlighted.
Citation: Muminu O. Adamu, Aderemi O. Adewumi. Minimizing the weighted number of tardy jobs on multiple machines: A review. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1465-1493. doi: 10.3934/jimo.2016.12.1465
References:
[1]

M. O. Adamu and O. Abass, Parallel machine scheduling to maximize the weighted number of just-in-time jobs,, Journal of Applied Science and Technology, 15 (2010), 27. Google Scholar

[2]

M. O. Adamu and A. Adewumi, Metaheuristics for scheduling on parallel machines to minimize the weighted number of early and tardy jobs,, International Journal of Physical Sciences, 7 (2012), 1641. Google Scholar

[3]

M. O. Adamu and A. Adewumi, Single machine review to minimize weighted number of tardy jobs,, Journal of Industrial and Management Optimization, 10 (2014), 219. doi: 10.3934/jimo.2014.10.219. Google Scholar

[4]

M. O. Adamu, N. Budlender and G. A. Idowu, A Note on just-in-time scheduling on flow shop machines,, Journal of the Nigerian Mathematical Society, 33 (2014), 321. Google Scholar

[5]

R. H. Ahmadi and U. Bagchi, Coordinated Scheduling of Customer Orders,, Updated Paper, (1997). Google Scholar

[6]

S. Albers and P. Brucker, The complexity of one machine batching problem,, Discrete Applied Mathematics, 47 (1993), 87. doi: 10.1016/0166-218X(93)90085-3. Google Scholar

[7]

A. Allahverdi, J. N. D. Gupta and T. Aldowaisan, A review of scheduling research involving setup considerations,, OMEGA The International Journal of Management Science, 27 (1999), 219. Google Scholar

[8]

A. Allahverdi, C. T. Ng, T. C. E. Cheng and M. Y. Kovalyov., A survey of scheduling problems with setup times or costs,, European Journal of Operational Research, 187 (2008), 985. doi: 10.1016/j.ejor.2006.06.060. Google Scholar

[9]

H. Allaoui and A. Artiba, Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints,, Computer and Industrial Engineering, 47 (2004), 431. Google Scholar

[10]

K. R. Baker and G. D. Scudder, Scheduling with earliness and tardiness penalties: A review,, Operations Research, 38 (1990), 22. doi: 10.1287/opre.38.1.22. Google Scholar

[11]

M. F. Baki and R. G. Vickson, One operator, two machine open shop and flow shop problems with setup times for machines and weighted number of tardy jobs objective,, Optimization Methods and Software, 19 (2004), 165. doi: 10.1080/10556780410001657653. Google Scholar

[12]

P. Baptiste, Batching identical jobs,, Mathematical Methods of Operations Research, 52 (2000), 355. doi: 10.1007/s001860000088. Google Scholar

[13]

P. Baptiste, Preemptive Scheduling of Identical Machines,, Technical Report, (2000). Google Scholar

[14]

P. Baptiste, On minimizing the weighted number of late jobs in unit execution time open shops,, European Journal of Operational Research, 149 (2003), 344. doi: 10.1016/S0377-2217(02)00759-2. Google Scholar

[15]

P. Baptiste, P. Brucker, S. Knust and V. G. Timkovsky, Ten notes on equal processing time scheduling,, 40R, 2 (2004), 111. doi: 10.1007/s10288-003-0024-4. Google Scholar

[16]

P. Baptiste, A. Jouglet, C. L. Pape and W. Nuijten., A Constraint Based Approach to Minimize the Weighted Number of Late Jobs on Parallel Machines,, Technical Report 2000/228, (2000). Google Scholar

[17]

O. J. Boxma and F. G. Forst, Minimizing the expected weighted number of tardy jobs in stochastic flow shops,, Operations Research Letters, 5 (1986), 119. doi: 10.1016/0167-6377(86)90084-2. Google Scholar

[18]

P. Brucker, Scheduling Algorithms,, Springer - Verlag, (1995). Google Scholar

[19]

P. Brucker and S. Knust, Complexity Results for Scheduling Problems,, 2011, (). Google Scholar

[20]

P. Brucker and S. Knust, Complexity results for single-machine problems with positive finish-start time-lags,, Computing, 63 (1999), 299. doi: 10.1007/s006070050036. Google Scholar

[21]

P. Brucker and A. Kraemer, Polynomial algorithms for resource - constrainted and multiprocessor task scheduling problems,, European Journal of Operational Research, 90 (1996), 214. Google Scholar

[22]

P. Brucker, T. C. E. Cheng, S. Knust and N. V. Shakhlevich, Complexity results for flowshop and open shop problems with transportation delays,, Annals of Operations Research, 129 (2004), 81. doi: 10.1023/B:ANOR.0000030683.64615.c8. Google Scholar

[23]

P. Brucker, C. Dhaenens-Flipo, S. Knust, S. A. Kravchenko and F. Werner, Complexity results for parallel machine problems with a single server,, Journal of Scheduling, 5 (2002), 429. doi: 10.1002/jos.120. Google Scholar

[24]

P. Brucker, A. Gladky, H. Hoogeveen, M. V. Kovalyov, C. N. Potts, T. Tautenhahn and S. L. Van De Velde, Scheduling a batching machine,, Journal of Scheduling, 1 (1998), 31. doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R. Google Scholar

[25]

P. Brucker, S. Heitmann and J. Hurink., How useful are preemptive schedule?,, Operations Research Letters, 31 (2003), 129. doi: 10.1016/S0167-6377(02)00220-1. Google Scholar

[26]

P. Brucker, B. Jurisch, T. Tautenhahn and F. Werner, Scheduling unit time open shops to minimize the weighted number of late jobs,, Operations Research Letters, 14 (1993), 245. doi: 10.1016/0167-6377(93)90088-X. Google Scholar

[27]

P. Brucker, B. Jurish and A. Krämer, Complexity of scheduling problems with multi-purpose machines,, Annals of Operations Research, 70 (1997), 57. doi: 10.1023/A:1018950911030. Google Scholar

[28]

P. Brucker, S. A. Kravchenko and Y. N. Sotskov, On the complexity of two machine job-shop scheduling with regular objective functions,, OR Spektrum, 19 (1997), 5. doi: 10.1007/BF01539799. Google Scholar

[29]

R. L. Bulfin and R. M'Hallah, Minimizing the weighted number of tardy jobs on a two-machine flow shop,, Computers and Operational Research, 30 (2003), 1887. doi: 10.1016/S0305-0548(02)00114-4. Google Scholar

[30]

O. Cepek and S. C. Sung, A quadratic time algorithm to maximize the number of just-in-time jobs on identical parallel machines,, Computers and Operational Research, 32 (2005), 3265. doi: 10.1016/j.cor.2004.05.011. Google Scholar

[31]

C. L. Chen, Iterated hybrid metaheuristics algorithms for unrelated parallel machines problem with unequal ready times and sequence-dependent setup times,, The International Journal of Advanced Manufacturing Technology, 60 (2012), 693. Google Scholar

[32]

C. L. Chen and R. L. Bulfin, Complexity of single machine multicriteria scheduling problems,, European Journal of Operational Research, 70 (1993), 115. Google Scholar

[33]

Z. Chen and W. B. Powel, Solving parallel machine scheduling problems by column generation,, INFORMS Journal on Computing, 11 (1999), 78. doi: 10.1287/ijoc.11.1.78. Google Scholar

[34]

Z. L. Chen and W. B. Powell, Exact algorithms for scheduling multiple families of jobs on parallel machines,, Naval Research Logistics, 50 (2003), 823. doi: 10.1002/nav.10091. Google Scholar

[35]

T. C. E. Cheng and M. Gupta, Survey of scheduling research involving due date assignment,, European Journal of Operational Research, 38 (1989), 156. doi: 10.1016/0377-2217(89)90100-8. Google Scholar

[36]

T. C. E. Cheng, J. N. D. Gupta and G. Wang, A review of flowshop scheduling research with setup times,, Production and Operations Management, 9 (2000), 262. Google Scholar

[37]

T. C. E. Cheng, Q. Wang and J. Yuan, Customer Order Scheduling on Multiple Facilities,, Private Communication, (2006). Google Scholar

[38]

T. C. Chiang and L. C. Fu, Using a family of critical ratio-based approaches to minimize the number of tardy jobs in the job shop with sequence dependent setup times,, European Journal of Operational Research, 196 (2009), 78. Google Scholar

[39]

B. C. Choi and S. H. Yoon, Maximizing the weighted number of just-in-time jobs in flowshop scheduling,, Journal of Scheduling, 10 (2007), 237. doi: 10.1007/s10951-007-0030-z. Google Scholar

[40]

H. S. Choi and D. H. Lee, A branch and bound algorithm for two stage flow shops: minimizing the number of tardy jobs,, Journal of the Korean Institute of Industrial Engineers, 33 (2007), 213. Google Scholar

[41]

H. S. Choi and D. H. Lee, Scheduling algorithms to minimize the number of tardy jobs in two-stage hybrid flow shops,, Computers and Industrial Engineering, 56 (2009), 113. Google Scholar

[42]

C. Chu, J. M. Proth and S. Sethi, Heuristic procedure for minimizing makespan and the number of required pallets,, European Journal of Operational Research, 86 (1995), 491. Google Scholar

[43]

R. W. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling,, Addison-Wesley, (1967). Google Scholar

[44]

F. D. Croce, J. N. D. Gupta and R. Tadei, Minimizing tardy jobs in a flowshop with common due date,, European Journal of Operational Research, 120 (2000), 375. doi: 10.1016/S0377-2217(99)00164-2. Google Scholar

[45]

S. Dauzère-Pérès and M. Sevaux, Using Lagrangean Relaxation to Minimize the (Weighted) Number of Late Jobs on a Single Machine,, National Contribution IFORS 1999, (1999). Google Scholar

[46]

C. Desprez, C. Chu and F. Chu, A genetic algorithm for minimizing the weighted number of tardy jobs,, Proceedings of IEEE, (2006), 1271. Google Scholar

[47]

C. Desprez, F. Chu and C. Chu, Minimizing the weighted number of tardy jobs in a hybrid flow shop with genetic algorithm,, International Journal of Computer Integrated Manufacturing, 22 (2009), 745. Google Scholar

[48]

M. J. Dessouky, B. J. Lageweg, J. K. Lenstra and S. L. Vande Velde, Scheduling identical jobs on uniform parallel machines,, Statistica Neerlandica, 44 (1990), 115. doi: 10.1111/j.1467-9574.1990.tb01276.x. Google Scholar

[49]

E. Dhouib, J. Teghem and T. Loukil, Minimizing the number of tardy jobs in a permutation flowshop scheduling problem with setup times and time lags constraints,, Journal of Mathematical Modelling and Algorithms in Operations Research, 12 (2013), 85. Google Scholar

[50]

J. Du and J. Y. T. Leung, Minimizing the number of late jobs on unrelated machines,, Operations Research Letter, 10 (1991), 153. doi: 10.1016/0167-6377(91)90032-K. Google Scholar

[51]

J. Du, J. Y. T. Leung and C. S. Wong, Minimizing the number of late jobs with release time constraint,, Journal of Combinatorial Mathematics and Combinatorial Computing, 11 (1992), 97. Google Scholar

[52]

S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop,, Ellis Harwood, (1982). Google Scholar

[53]

G. Galambos and G. J. Woeginger, Minimizing the weighted number of late jobs in uet open shops,, Zeitschrift fur Operations Research ZOR - Methematical Methods of Operations Research, 41 (1995), 109. doi: 10.1007/BF01415068. Google Scholar

[54]

M. R. Garey and D. S. Johnson, Strong NP-completeness results: motivation, examples and implications,, Journal of the Association for Computing Machinery, 25 (1978), 499. doi: 10.1145/322077.322090. Google Scholar

[55]

M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP Completeness,, Freeman, (1979). Google Scholar

[56]

A. A. Gladky, On complexity of minimizing weighted number of late jobs in unit time open shops,, Discrete Applied Mathematics, 74 (1997), 197. doi: 10.1016/S0166-218X(97)81448-5. Google Scholar

[57]

R. L. Graham, E. L. Lawler, T. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey,, Annals of Discrete Mathematics, 5 (1979), 287. doi: 10.1016/S0167-5060(08)70356-X. Google Scholar

[58]

E. Gersl, B. Mor and G. Mosheiov, A note: Maximizing the weighted number of just-in-time jobs on a proportionate flowshop,, Information Procesing Letters, 115 (2015), 159. doi: 10.1016/j.ipl.2014.09.004. Google Scholar

[59]

S. Guirchoun, A. Souhkal and P. Martineau, Complexity results for parallel machine scheduling problems with a server in computer systems,, In:Processings of the 2nd Multidisciplinary International Conference on Scheduling: Theory and Application, (2005), 232. Google Scholar

[60]

J. N. D. Gupta and A. M. A. Hariri, Integrating Job Selection and Scheduling in a Flowshop,, Working Paper, (1994). Google Scholar

[61]

J. N. D. Gupta and A. M. A. Hariri, Two machine flow shop to minimize number of tardy jobs,, Journal of Operational Research Society, 48 (1997), 212. Google Scholar

[62]

J. N. D. Gupta and E. A. Tunc, Minimizing tardy jobs in a two-stage hybrid flowshop,, International Journal of Production Research, 36 (1998), 2397. Google Scholar

[63]

N. G. Hall, C. N. Potts and C. Sriskandarajah, Parallel machine scheduling with a common server,, Discrete Applied Mathematics, 102 (2000), 223. doi: 10.1016/S0166-218X(99)00206-1. Google Scholar

[64]

A. M. A. Hariri and C. N. Potts, A branch and bound algorithm to minimize number of late jobs in a permutation flow shop,, European Journal of Operational Research, 38 (1989), 228. doi: 10.1016/0377-2217(89)90108-2. Google Scholar

[65]

K. Hiraishi, E. Levner and M. Vlach, Scheduling of parallel identical machines to maximize the weighted number of just-in-time jobs,, Computers and Operations Research, 29 (2002), 841. doi: 10.1016/S0305-0548(00)00086-1. Google Scholar

[66]

J. C. Ho and Y. L. Chang, Minimizing the number of tardy jobs for m parallel machines,, European Journal of Operational Research, 84 (1995), 343. Google Scholar

[67]

J. C. Ho and J. N. D. Gupta, Flowshop Scheduling with Dominant machine,, Computers and Operations Research, 22 (1995), 237. Google Scholar

[68]

H. Hoogeveen, Multicriteria scheduling,, European Journal of Operational Research, 167 (2005), 592. doi: 10.1016/j.ejor.2004.07.011. Google Scholar

[69]

H. L. Huang and B. M. T. Lin, Concurrent open shop problem to minimize the weighted number of late jobs,, Multiprocessor Scheduling: Theory and Applications, (2007), 215. Google Scholar

[70]

A. S. Jain and S. Meeran, Deterministic job shop scheduling: Past, present and future,, European Journal of Operational Research, 113 (1999), 390. Google Scholar

[71]

A. Janiak, W. A. Janiak and R. Januszkiewicz, Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs,, Bulletin of the Polish Academy of Sciences Technical Sciences, 57 (2009), 209. Google Scholar

[72]

F. Jolai, M. S. Amalnick and M. Alinaghian, A hybrid memetic algorithm for maximizing the weighted number of just-in-time jobs on unrelated parallel machines,, Journal of Intelligence Manufacturing, 22 (2011), 247. Google Scholar

[73]

J. Josefowska, B. Jurisch and W. Kubiak, Scheduling shops to minimize the weighted number of late jobs,, Operations Research Letters, 10 (1994), 27. Google Scholar

[74]

J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines and dual criteria,, Otto-von-Guericke-Universitat Magdeburg, (2005), 1. Google Scholar

[75]

J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, Constructive tabu search algorithms for hybrid flowshop problems with unrelated parallel machines and setup times,, International Journal of Computational Science, 1 (2007), 204. Google Scholar

[76]

S. Knust, Shop-scheduling problems with transportation,, PhD Thesis, (1999). Google Scholar

[77]

A. Krämer, Scheduling Multi processor Tasks in Dedicated Processors,, PhD Thesis, (1995). Google Scholar

[78]

S. Kravchenko and F. Werner, Parallel machine problems with equal processing times: A survey,, J. Sched., 14 (2011), 435. doi: 10.1007/s10951-011-0231-3. Google Scholar

[79]

S. A. Kravchenko, Minimizing the number of late jobs for the two-machine unit-time job shop scheduling problem,, Discrete Applied Mathematics, 98 (2000), 209. doi: 10.1016/S0166-218X(99)00165-1. Google Scholar

[80]

S. A. Kravchenko, On the complexity of minimizing the number of late jobs in unit time open shop,, Discrete Applied Mathematics, 100 (2000), 127. doi: 10.1016/S0166-218X(99)00202-4. Google Scholar

[81]

W. Kubiak, C. Sriskandarajah and K. Zaras, A note on the complexity of open shop scheduling problems,, INFOR, 29 (1991), 284. Google Scholar

[82]

A. Lann and G. Mosheiov, A note on the maximum number of on-time jobs on parallel identical machines,, Computers and Operations Research, 30 (2003), 1745. doi: 10.1016/S0305-0548(02)00084-9. Google Scholar

[83]

E. L. Lawler and C. U. Martel, Preemptive scheduling of two uniform machines to minimize the number of late jobs,, Operations Research, 37 (1989), 314. doi: 10.1287/opre.37.2.314. Google Scholar

[84]

E. L. Lawler and J. M. Moore, A functional equation and its applications to resource allocation and sequencing problems,, Management Science, 16 (1969), 77. Google Scholar

[85]

E. L. Lawler, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems,, Report BW 106/79, (1979). Google Scholar

[86]

E. L. Lawler, Recent results in the theory of machine scheduling,, In: A. Bachem, (1983), 202. Google Scholar

[87]

E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Erratum: Minimizing maximum lateness in a two-machine open shop,, Maths. Operations Research, 7 (1982). doi: 10.1287/moor.7.4.635. Google Scholar

[88]

E. L. Lawler, J. K. Lenstra and A. H. G. Rinnovy Kan, Minimizing maximum lateness in a two-machine open shop,, Math. Operations Research, 6 (1981), 153. doi: 10.1287/moor.6.1.153. Google Scholar

[89]

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, Sequencing and scheduling: Algorithms and complexity,, In: S.C. Graves, (1993), 445. Google Scholar

[90]

D. Lei, Multi-objective production scheduling: A survey,, International Journal of Advance Manufacturing Technology, 43 (2009), 926. Google Scholar

[91]

J. K. Lenstra, Production Scheduling,, Mathematisch Centrum, (1977). Google Scholar

[92]

J. K. Lenstra, A. H. G. Rinnooy and P. Brucker, Complexity of machine scheduling problems,, Annals of Discrete Mathematics, 1 (1977), 343. Google Scholar

[93]

J. Y. T. Leung, H. Li and M. Pinedo, Scheduling orders for multiple product types with due dates related objectives,, European Journal of Operational Research, 168 (2006), 370. doi: 10.1016/j.ejor.2004.03.030. Google Scholar

[94]

J. Y. T. Leung and V. K. M. Yu, Heuristic for minimizing the number of late jobs on two processors,, International Journal on Foundations of Computer Science, 5 (1995), 261. Google Scholar

[95]

C. L. Li, T. C. E. Cheng and Z. L. Chen, Single machine scheduling to minimize the weighted number of early and tardy agreeable jobs,, Computers and Operations Research, 22 (1995), 205. Google Scholar

[96]

C. L. Li, A heuristic for parallel machine scheduling with agreeable due dates to minimize the number of late jobs,, Computers and Operations Research, 22 (1995), 277. Google Scholar

[97]

B. M. T. Lin and A. A. K. Jeng, Parallel machine batch scheduling to minimize the maximum lateness and the number of tardy jobs,, International Journal of Production Economics, 91 (2004), 121. Google Scholar

[98]

B. M. T. Lin and A. V. Kononov, Customer order scheduling to minimize the number of late jobs,, European Journal of Operational Research, 183 (2007), 944. Google Scholar

[99]

B. M. T. Lin, Scheduling in the two-machine flow shop with due date constraints,, Journal of Production Economics, 70 (2001), 117. Google Scholar

[100]

R. Linn and W. Zhang, Hybrid flow shop scheduling. a survey,, Computers and Industrial Engineering, 37 (1999), 57. Google Scholar

[101]

C. Y. Liu and R. L. Bulfin, Scheduling open shops with unit execution times to minimize functions of due dates,, Operations Research, 36 (1988), 553. doi: 10.1287/opre.36.4.553. Google Scholar

[102]

M. Liu and C. Wu, Scheduling algorithm based on evolutionary computing in identical parallel machine production line,, Robotics and Computer Integrated Manufacturing, 19 (2003), 401. Google Scholar

[103]

E. Lodree, W. Jang and C. M. Klein, A new rule for minimizing the weighted number of tardy jobs in dynamic flow shops,, European Journal of Operational Research, 159 (2004), 258. doi: 10.1016/S0377-2217(03)00404-1. Google Scholar

[104]

R. M'Hallah and R. L. Bulfin, Minimizing the weighted number of tardy jobs on parallel processors,, European Journal of Operational Research, 160 (2005), 471. doi: 10.1016/j.ejor.2003.06.027. Google Scholar

[105]

M. Mathirajan and A. J. Sivakumar, A literature review, classification and simple meta-analysis on scheduling of batch processors in semi-conductor,, International Journal of Advance Manufacturing Technology, 29 (2006), 990. Google Scholar

[106]

M. Middendorf and V. G. Timkovsky, Transversal graphs for partially ordered sets: Sequencing, merging and scheduling problems,, Journal of Combinatorial Optimization, 3 (1999), 417. doi: 10.1023/A:1009827520712. Google Scholar

[107]

J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs,, Management Science, 15 (1968), 102. Google Scholar

[108]

G. Mosheiov and D. Oron, Minimizing the number of tardy jobs on a proportionate flowshop with general position-dependent processing times,, Computers and Operational Research, 39 (2012), 1601. doi: 10.1016/j.cor.2011.09.011. Google Scholar

[109]

G. Mosheiov and A. Sarig, Minimum weighted number of tardy jobs on m-machine flow-shop,, European Journal of Operational Research, 201 (2010), 404. doi: 10.1016/j.ejor.2009.03.018. Google Scholar

[110]

A. Nagar, J. Haddock and S. Heragu, Multiple and bicriteria scheduling: A literature survey,, European Journal of Operational Research, 81 (1995), 88. Google Scholar

[111]

C. T. Ng, T. C. E. Cheng and J. J. Yuan, Concurrent Open Shop Scheduling to Minimize the Weighted Number of Tardy Jobs,, Journal of Scheduling, 6 (2003), 405. doi: 10.1023/A:1024284828374. Google Scholar

[112]

H. Ohta and T. Nakatani, A heuristic job shop scheduling algorithm to minimize the total holding of completed and in-process products subject to no tardy jobs,, International Journal of Production Economics, 101 (2006), 19. Google Scholar

[113]

M. Park and Y. Kim, Search heuristics for a parallel machine scheduling problem with ready times and due dates,, Computers Industrial Engineering, 33 (1997), 793. Google Scholar

[114]

C. N. Potts and M. V. Kovalyov, Scheduling with batching: A review,, European Journal of Operational Research, 120 (2000), 228. doi: 10.1016/S0377-2217(99)00153-8. Google Scholar

[115]

C. N. Potts and V. Wassenhove, Integrating scheduling with batching and lot-sizing: A review of algorithms and complexity,, Journal of Operations Research Society, 43 (1992), 395. Google Scholar

[116]

T. A. Reomer, A note on the complexity of the concurrent open shop problem,, Journal of Scheduling, 9 (2006), 389. doi: 10.1007/s10951-006-7042-y. Google Scholar

[117]

A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations,, Nijhoff, (1976). doi: 10.1007/978-1-4613-4383-7. Google Scholar

[118]

A. J. Ruiz-Torres, J. H. Ablanedo-Rsas and J. C. Ho, Minimizing the number of tardy jobs in the flowshop problem with operational and resource flexibility,, Computers and Operational Research, 37 (2010), 282. doi: 10.1016/j.cor.2009.04.018. Google Scholar

[119]

A. J. Ruiz-Torres and G. Centeno, Minimizing the number of late jobs for the permutation flowshop problem with secondary resources,, Computers and Operational Research, 35 (2008), 1227. doi: 10.1016/j.cor.2006.07.013. Google Scholar

[120]

A. J. Ruiz-Torres, E. E. Enscore and R. R. Barton, Simulated annealing heuristics for the average flow time and number of tardy jobs bi-criteria identical parallel machine problem,, Computers and Industrial Engineering, 33 (1997), 257. Google Scholar

[121]

A. J. Ruiz-Torres, F. J. López and J. C. Ho, Scheduling uniform parallel machines subjected to a secondary resource to minimize the number of tardy jobs,, European Journal of Operational Research, 179 (2007), 302. Google Scholar

[122]

P. Senthilkumar and S. Narayanan, Literature review of single machine scheduling problem with uniform parallel machines,, Intelligent Information Management, 2 (2010), 457. Google Scholar

[123]

M. Sevaux and K. Sörensen, VNS/TS for a Parallel Machine Scheduling Problem,, MEC-VNS: 18th Mini Euro Conference pm VNS, (2005). Google Scholar

[124]

M. Sevaux and P. Thomin, Heuristics and metaheuristics for a parallel machine scheduling problem: A computational evaluation,, Proceedings of 4th Metaheuristics International Conference, (2001), 411. Google Scholar

[125]

D. Shabtay and Y. Bensoussan, Maximizing the weighted number of just-in-time jobs in several two machine scheduling systems,, Journal of Scheduling, 15 (2012), 39. doi: 10.1007/s10951-010-0204-y. Google Scholar

[126]

D. Shabtay, Y. Bensoussan and M. Kaspi, A bicriteria approach to maximize the weighted number of just-in-time jobs and to minimize the total resource consumption cost in a two-machine flowshop scheduling system,, International Journal of Production Economics, 136 (2012), 67. Google Scholar

[127]

R. Sitters, Complexity of preemptive minsum scheduling on unrelated parallel machines,, Journal of Algorithms, 57 (2005), 37. doi: 10.1016/j.jalgor.2004.06.011. Google Scholar

[128]

Y. N. Sotskov, The complexity of shop scheduling problems with two or three jobs,, European Journal of Operational Research, 53 (1991), 326. Google Scholar

[129]

S. Sriram, C. Mala and N. P. Gopalan, Online Parallel Machine Scheduling with Hard Deadlines,, International Journal of Recent Trends in Engineering, 2 (2009), 263. Google Scholar

[130]

G. A. Süer, Minimizing the number of tardy jobs in multi-period cell loading problems,, Computers and Industrial Engineering, 33 (1997), 721. Google Scholar

[131]

G. A. Süer, Z. Czajkiewicz and E. Baez, Minimizing the Number of Tardy Jobs in Identical Machine Scheduling,, Proceedings of the 15th Conference on Computers and Industrial Engineering, (1993). Google Scholar

[132]

G. A. Süer, F. Pico and A. Santiago, Identical machine scheduling to minimize the number of tardy jobs when lost-splitting is allowed,, Computers Industrial Engineering, 33 (1997), 271. Google Scholar

[133]

S. C. Sung and M. Vlach, Just-In-Time Scheduling on Parallel Machines,, The European Operational Research Conference, (2001). Google Scholar

[134]

V. T'Kindt, F. D. Croce and J. L. Bouquard, Enumerating of pareto optima for a flowshop scheduling problem with two criteria,, Journal of Computing, 19 (2007), 64. doi: 10.1287/ijoc.1050.0167. Google Scholar

[135]

V. G. Timkorsky, Is a unit-time job shop not easier than identical parallel machines?,, Discrete Applied Mathematics, 85 (1998), 149. doi: 10.1016/S0166-218X(98)00032-8. Google Scholar

[136]

V. G. Timkorsky, Identical parallel machines vs. unit time shops and preemptions vs. chains in scheduling complexity,, European Journal of Operational Research, 149 (2003), 355. doi: 10.1016/S0377-2217(02)00767-1. Google Scholar

[137]

H. Ucar and M. F. Tasgetiren, A particle swarm optimization algorithm for permutation flow shop sequencing problem with the number of tardy jobs criterion,, Proceedings of 5th International Symposium of Intelligent Manufacturing Systems, (2006), 1110. Google Scholar

[138]

J. M. Van Den Akker, J. A. Hoogeveen and S. L. Van De Velde, Parallel machine scheduling by column generation,, Operations Research, 47 (1999), 862. doi: 10.1287/opre.47.6.862. Google Scholar

[139]

M. Van der Akker and H. Hoogeveen, Minimizing the Number of Tardy Jobs, In J.Y.-T. Leung (Ed),, Handbook of Scheduling: Algorithms, (2004). Google Scholar

[140]

F. Vargas-Nieto and J. R. Montoya-Torres, Scheduling a Thermal-Printed Label Manufacturing Plant Using an Evolutionary Algorithm,, 19th Proceedings International Conference on Production Research (ICPR-19), (2007). Google Scholar

[141]

E. Wagneur and C. Sriskandarajah, Open shops with job overlap,, European Journal of Operational Research, 71 (1993), 366. Google Scholar

[142]

I. L. Wang, Y. C. Wang and C. W. Chen, Scheduling unrelated parallel machines in semiconductor manufacturing by problem reduction and local search heuristics,, Flexible Services and Manufacturing Journal, 25 (2012), 343. Google Scholar

[143]

J. B. Wang and Z. Q. Xia, No wait or no idle permutation flowshop scheduling with dominating machines,, Journal of Applied Mathematics and Computing, 17 (2005), 419. doi: 10.1007/BF02936066. Google Scholar

[144]

S. Webster and K. R. Baker, Scheduling groups of jobs on a single machine,, Operations Research, 43 (1995), 692. doi: 10.1287/opre.43.4.692. Google Scholar

[145]

S. Xiang, G. Tang and T. C. E. Cheng, Solvable cases of permutation flowshop scheduling with dominating machines,, International Journal of Production Economics, 66 (2000), 53. Google Scholar

[146]

W. H. Yang and C. J. Liao, Survey of scheduling research involving setup times,, International Journal of Systems Sciences, 30 (1999), 143. Google Scholar

[147]

B. P. C. Yen and G. Wan, Single machine bicriteria scheduling: A survey,, Industrial Engineering: Theory, 10 (2003), 222. Google Scholar

[148]

W. K. Yeung, C. Oğuz and T. C. E. Cheng, Two-machine flow shop scheduling with common due window to minimize weighted number of early and tardy jobs,, Naval Research Logistics, 56 (2009), 593. doi: 10.1002/nav.20356. Google Scholar

show all references

References:
[1]

M. O. Adamu and O. Abass, Parallel machine scheduling to maximize the weighted number of just-in-time jobs,, Journal of Applied Science and Technology, 15 (2010), 27. Google Scholar

[2]

M. O. Adamu and A. Adewumi, Metaheuristics for scheduling on parallel machines to minimize the weighted number of early and tardy jobs,, International Journal of Physical Sciences, 7 (2012), 1641. Google Scholar

[3]

M. O. Adamu and A. Adewumi, Single machine review to minimize weighted number of tardy jobs,, Journal of Industrial and Management Optimization, 10 (2014), 219. doi: 10.3934/jimo.2014.10.219. Google Scholar

[4]

M. O. Adamu, N. Budlender and G. A. Idowu, A Note on just-in-time scheduling on flow shop machines,, Journal of the Nigerian Mathematical Society, 33 (2014), 321. Google Scholar

[5]

R. H. Ahmadi and U. Bagchi, Coordinated Scheduling of Customer Orders,, Updated Paper, (1997). Google Scholar

[6]

S. Albers and P. Brucker, The complexity of one machine batching problem,, Discrete Applied Mathematics, 47 (1993), 87. doi: 10.1016/0166-218X(93)90085-3. Google Scholar

[7]

A. Allahverdi, J. N. D. Gupta and T. Aldowaisan, A review of scheduling research involving setup considerations,, OMEGA The International Journal of Management Science, 27 (1999), 219. Google Scholar

[8]

A. Allahverdi, C. T. Ng, T. C. E. Cheng and M. Y. Kovalyov., A survey of scheduling problems with setup times or costs,, European Journal of Operational Research, 187 (2008), 985. doi: 10.1016/j.ejor.2006.06.060. Google Scholar

[9]

H. Allaoui and A. Artiba, Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints,, Computer and Industrial Engineering, 47 (2004), 431. Google Scholar

[10]

K. R. Baker and G. D. Scudder, Scheduling with earliness and tardiness penalties: A review,, Operations Research, 38 (1990), 22. doi: 10.1287/opre.38.1.22. Google Scholar

[11]

M. F. Baki and R. G. Vickson, One operator, two machine open shop and flow shop problems with setup times for machines and weighted number of tardy jobs objective,, Optimization Methods and Software, 19 (2004), 165. doi: 10.1080/10556780410001657653. Google Scholar

[12]

P. Baptiste, Batching identical jobs,, Mathematical Methods of Operations Research, 52 (2000), 355. doi: 10.1007/s001860000088. Google Scholar

[13]

P. Baptiste, Preemptive Scheduling of Identical Machines,, Technical Report, (2000). Google Scholar

[14]

P. Baptiste, On minimizing the weighted number of late jobs in unit execution time open shops,, European Journal of Operational Research, 149 (2003), 344. doi: 10.1016/S0377-2217(02)00759-2. Google Scholar

[15]

P. Baptiste, P. Brucker, S. Knust and V. G. Timkovsky, Ten notes on equal processing time scheduling,, 40R, 2 (2004), 111. doi: 10.1007/s10288-003-0024-4. Google Scholar

[16]

P. Baptiste, A. Jouglet, C. L. Pape and W. Nuijten., A Constraint Based Approach to Minimize the Weighted Number of Late Jobs on Parallel Machines,, Technical Report 2000/228, (2000). Google Scholar

[17]

O. J. Boxma and F. G. Forst, Minimizing the expected weighted number of tardy jobs in stochastic flow shops,, Operations Research Letters, 5 (1986), 119. doi: 10.1016/0167-6377(86)90084-2. Google Scholar

[18]

P. Brucker, Scheduling Algorithms,, Springer - Verlag, (1995). Google Scholar

[19]

P. Brucker and S. Knust, Complexity Results for Scheduling Problems,, 2011, (). Google Scholar

[20]

P. Brucker and S. Knust, Complexity results for single-machine problems with positive finish-start time-lags,, Computing, 63 (1999), 299. doi: 10.1007/s006070050036. Google Scholar

[21]

P. Brucker and A. Kraemer, Polynomial algorithms for resource - constrainted and multiprocessor task scheduling problems,, European Journal of Operational Research, 90 (1996), 214. Google Scholar

[22]

P. Brucker, T. C. E. Cheng, S. Knust and N. V. Shakhlevich, Complexity results for flowshop and open shop problems with transportation delays,, Annals of Operations Research, 129 (2004), 81. doi: 10.1023/B:ANOR.0000030683.64615.c8. Google Scholar

[23]

P. Brucker, C. Dhaenens-Flipo, S. Knust, S. A. Kravchenko and F. Werner, Complexity results for parallel machine problems with a single server,, Journal of Scheduling, 5 (2002), 429. doi: 10.1002/jos.120. Google Scholar

[24]

P. Brucker, A. Gladky, H. Hoogeveen, M. V. Kovalyov, C. N. Potts, T. Tautenhahn and S. L. Van De Velde, Scheduling a batching machine,, Journal of Scheduling, 1 (1998), 31. doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R. Google Scholar

[25]

P. Brucker, S. Heitmann and J. Hurink., How useful are preemptive schedule?,, Operations Research Letters, 31 (2003), 129. doi: 10.1016/S0167-6377(02)00220-1. Google Scholar

[26]

P. Brucker, B. Jurisch, T. Tautenhahn and F. Werner, Scheduling unit time open shops to minimize the weighted number of late jobs,, Operations Research Letters, 14 (1993), 245. doi: 10.1016/0167-6377(93)90088-X. Google Scholar

[27]

P. Brucker, B. Jurish and A. Krämer, Complexity of scheduling problems with multi-purpose machines,, Annals of Operations Research, 70 (1997), 57. doi: 10.1023/A:1018950911030. Google Scholar

[28]

P. Brucker, S. A. Kravchenko and Y. N. Sotskov, On the complexity of two machine job-shop scheduling with regular objective functions,, OR Spektrum, 19 (1997), 5. doi: 10.1007/BF01539799. Google Scholar

[29]

R. L. Bulfin and R. M'Hallah, Minimizing the weighted number of tardy jobs on a two-machine flow shop,, Computers and Operational Research, 30 (2003), 1887. doi: 10.1016/S0305-0548(02)00114-4. Google Scholar

[30]

O. Cepek and S. C. Sung, A quadratic time algorithm to maximize the number of just-in-time jobs on identical parallel machines,, Computers and Operational Research, 32 (2005), 3265. doi: 10.1016/j.cor.2004.05.011. Google Scholar

[31]

C. L. Chen, Iterated hybrid metaheuristics algorithms for unrelated parallel machines problem with unequal ready times and sequence-dependent setup times,, The International Journal of Advanced Manufacturing Technology, 60 (2012), 693. Google Scholar

[32]

C. L. Chen and R. L. Bulfin, Complexity of single machine multicriteria scheduling problems,, European Journal of Operational Research, 70 (1993), 115. Google Scholar

[33]

Z. Chen and W. B. Powel, Solving parallel machine scheduling problems by column generation,, INFORMS Journal on Computing, 11 (1999), 78. doi: 10.1287/ijoc.11.1.78. Google Scholar

[34]

Z. L. Chen and W. B. Powell, Exact algorithms for scheduling multiple families of jobs on parallel machines,, Naval Research Logistics, 50 (2003), 823. doi: 10.1002/nav.10091. Google Scholar

[35]

T. C. E. Cheng and M. Gupta, Survey of scheduling research involving due date assignment,, European Journal of Operational Research, 38 (1989), 156. doi: 10.1016/0377-2217(89)90100-8. Google Scholar

[36]

T. C. E. Cheng, J. N. D. Gupta and G. Wang, A review of flowshop scheduling research with setup times,, Production and Operations Management, 9 (2000), 262. Google Scholar

[37]

T. C. E. Cheng, Q. Wang and J. Yuan, Customer Order Scheduling on Multiple Facilities,, Private Communication, (2006). Google Scholar

[38]

T. C. Chiang and L. C. Fu, Using a family of critical ratio-based approaches to minimize the number of tardy jobs in the job shop with sequence dependent setup times,, European Journal of Operational Research, 196 (2009), 78. Google Scholar

[39]

B. C. Choi and S. H. Yoon, Maximizing the weighted number of just-in-time jobs in flowshop scheduling,, Journal of Scheduling, 10 (2007), 237. doi: 10.1007/s10951-007-0030-z. Google Scholar

[40]

H. S. Choi and D. H. Lee, A branch and bound algorithm for two stage flow shops: minimizing the number of tardy jobs,, Journal of the Korean Institute of Industrial Engineers, 33 (2007), 213. Google Scholar

[41]

H. S. Choi and D. H. Lee, Scheduling algorithms to minimize the number of tardy jobs in two-stage hybrid flow shops,, Computers and Industrial Engineering, 56 (2009), 113. Google Scholar

[42]

C. Chu, J. M. Proth and S. Sethi, Heuristic procedure for minimizing makespan and the number of required pallets,, European Journal of Operational Research, 86 (1995), 491. Google Scholar

[43]

R. W. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling,, Addison-Wesley, (1967). Google Scholar

[44]

F. D. Croce, J. N. D. Gupta and R. Tadei, Minimizing tardy jobs in a flowshop with common due date,, European Journal of Operational Research, 120 (2000), 375. doi: 10.1016/S0377-2217(99)00164-2. Google Scholar

[45]

S. Dauzère-Pérès and M. Sevaux, Using Lagrangean Relaxation to Minimize the (Weighted) Number of Late Jobs on a Single Machine,, National Contribution IFORS 1999, (1999). Google Scholar

[46]

C. Desprez, C. Chu and F. Chu, A genetic algorithm for minimizing the weighted number of tardy jobs,, Proceedings of IEEE, (2006), 1271. Google Scholar

[47]

C. Desprez, F. Chu and C. Chu, Minimizing the weighted number of tardy jobs in a hybrid flow shop with genetic algorithm,, International Journal of Computer Integrated Manufacturing, 22 (2009), 745. Google Scholar

[48]

M. J. Dessouky, B. J. Lageweg, J. K. Lenstra and S. L. Vande Velde, Scheduling identical jobs on uniform parallel machines,, Statistica Neerlandica, 44 (1990), 115. doi: 10.1111/j.1467-9574.1990.tb01276.x. Google Scholar

[49]

E. Dhouib, J. Teghem and T. Loukil, Minimizing the number of tardy jobs in a permutation flowshop scheduling problem with setup times and time lags constraints,, Journal of Mathematical Modelling and Algorithms in Operations Research, 12 (2013), 85. Google Scholar

[50]

J. Du and J. Y. T. Leung, Minimizing the number of late jobs on unrelated machines,, Operations Research Letter, 10 (1991), 153. doi: 10.1016/0167-6377(91)90032-K. Google Scholar

[51]

J. Du, J. Y. T. Leung and C. S. Wong, Minimizing the number of late jobs with release time constraint,, Journal of Combinatorial Mathematics and Combinatorial Computing, 11 (1992), 97. Google Scholar

[52]

S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job Shop,, Ellis Harwood, (1982). Google Scholar

[53]

G. Galambos and G. J. Woeginger, Minimizing the weighted number of late jobs in uet open shops,, Zeitschrift fur Operations Research ZOR - Methematical Methods of Operations Research, 41 (1995), 109. doi: 10.1007/BF01415068. Google Scholar

[54]

M. R. Garey and D. S. Johnson, Strong NP-completeness results: motivation, examples and implications,, Journal of the Association for Computing Machinery, 25 (1978), 499. doi: 10.1145/322077.322090. Google Scholar

[55]

M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP Completeness,, Freeman, (1979). Google Scholar

[56]

A. A. Gladky, On complexity of minimizing weighted number of late jobs in unit time open shops,, Discrete Applied Mathematics, 74 (1997), 197. doi: 10.1016/S0166-218X(97)81448-5. Google Scholar

[57]

R. L. Graham, E. L. Lawler, T. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey,, Annals of Discrete Mathematics, 5 (1979), 287. doi: 10.1016/S0167-5060(08)70356-X. Google Scholar

[58]

E. Gersl, B. Mor and G. Mosheiov, A note: Maximizing the weighted number of just-in-time jobs on a proportionate flowshop,, Information Procesing Letters, 115 (2015), 159. doi: 10.1016/j.ipl.2014.09.004. Google Scholar

[59]

S. Guirchoun, A. Souhkal and P. Martineau, Complexity results for parallel machine scheduling problems with a server in computer systems,, In:Processings of the 2nd Multidisciplinary International Conference on Scheduling: Theory and Application, (2005), 232. Google Scholar

[60]

J. N. D. Gupta and A. M. A. Hariri, Integrating Job Selection and Scheduling in a Flowshop,, Working Paper, (1994). Google Scholar

[61]

J. N. D. Gupta and A. M. A. Hariri, Two machine flow shop to minimize number of tardy jobs,, Journal of Operational Research Society, 48 (1997), 212. Google Scholar

[62]

J. N. D. Gupta and E. A. Tunc, Minimizing tardy jobs in a two-stage hybrid flowshop,, International Journal of Production Research, 36 (1998), 2397. Google Scholar

[63]

N. G. Hall, C. N. Potts and C. Sriskandarajah, Parallel machine scheduling with a common server,, Discrete Applied Mathematics, 102 (2000), 223. doi: 10.1016/S0166-218X(99)00206-1. Google Scholar

[64]

A. M. A. Hariri and C. N. Potts, A branch and bound algorithm to minimize number of late jobs in a permutation flow shop,, European Journal of Operational Research, 38 (1989), 228. doi: 10.1016/0377-2217(89)90108-2. Google Scholar

[65]

K. Hiraishi, E. Levner and M. Vlach, Scheduling of parallel identical machines to maximize the weighted number of just-in-time jobs,, Computers and Operations Research, 29 (2002), 841. doi: 10.1016/S0305-0548(00)00086-1. Google Scholar

[66]

J. C. Ho and Y. L. Chang, Minimizing the number of tardy jobs for m parallel machines,, European Journal of Operational Research, 84 (1995), 343. Google Scholar

[67]

J. C. Ho and J. N. D. Gupta, Flowshop Scheduling with Dominant machine,, Computers and Operations Research, 22 (1995), 237. Google Scholar

[68]

H. Hoogeveen, Multicriteria scheduling,, European Journal of Operational Research, 167 (2005), 592. doi: 10.1016/j.ejor.2004.07.011. Google Scholar

[69]

H. L. Huang and B. M. T. Lin, Concurrent open shop problem to minimize the weighted number of late jobs,, Multiprocessor Scheduling: Theory and Applications, (2007), 215. Google Scholar

[70]

A. S. Jain and S. Meeran, Deterministic job shop scheduling: Past, present and future,, European Journal of Operational Research, 113 (1999), 390. Google Scholar

[71]

A. Janiak, W. A. Janiak and R. Januszkiewicz, Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs,, Bulletin of the Polish Academy of Sciences Technical Sciences, 57 (2009), 209. Google Scholar

[72]

F. Jolai, M. S. Amalnick and M. Alinaghian, A hybrid memetic algorithm for maximizing the weighted number of just-in-time jobs on unrelated parallel machines,, Journal of Intelligence Manufacturing, 22 (2011), 247. Google Scholar

[73]

J. Josefowska, B. Jurisch and W. Kubiak, Scheduling shops to minimize the weighted number of late jobs,, Operations Research Letters, 10 (1994), 27. Google Scholar

[74]

J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines and dual criteria,, Otto-von-Guericke-Universitat Magdeburg, (2005), 1. Google Scholar

[75]

J. Jungwattanaki, M. Reodecha, P. Chaovalitwongse and F. Werner, Constructive tabu search algorithms for hybrid flowshop problems with unrelated parallel machines and setup times,, International Journal of Computational Science, 1 (2007), 204. Google Scholar

[76]

S. Knust, Shop-scheduling problems with transportation,, PhD Thesis, (1999). Google Scholar

[77]

A. Krämer, Scheduling Multi processor Tasks in Dedicated Processors,, PhD Thesis, (1995). Google Scholar

[78]

S. Kravchenko and F. Werner, Parallel machine problems with equal processing times: A survey,, J. Sched., 14 (2011), 435. doi: 10.1007/s10951-011-0231-3. Google Scholar

[79]

S. A. Kravchenko, Minimizing the number of late jobs for the two-machine unit-time job shop scheduling problem,, Discrete Applied Mathematics, 98 (2000), 209. doi: 10.1016/S0166-218X(99)00165-1. Google Scholar

[80]

S. A. Kravchenko, On the complexity of minimizing the number of late jobs in unit time open shop,, Discrete Applied Mathematics, 100 (2000), 127. doi: 10.1016/S0166-218X(99)00202-4. Google Scholar

[81]

W. Kubiak, C. Sriskandarajah and K. Zaras, A note on the complexity of open shop scheduling problems,, INFOR, 29 (1991), 284. Google Scholar

[82]

A. Lann and G. Mosheiov, A note on the maximum number of on-time jobs on parallel identical machines,, Computers and Operations Research, 30 (2003), 1745. doi: 10.1016/S0305-0548(02)00084-9. Google Scholar

[83]

E. L. Lawler and C. U. Martel, Preemptive scheduling of two uniform machines to minimize the number of late jobs,, Operations Research, 37 (1989), 314. doi: 10.1287/opre.37.2.314. Google Scholar

[84]

E. L. Lawler and J. M. Moore, A functional equation and its applications to resource allocation and sequencing problems,, Management Science, 16 (1969), 77. Google Scholar

[85]

E. L. Lawler, Efficient Implementation of Dynamic Programming Algorithms for Sequencing Problems,, Report BW 106/79, (1979). Google Scholar

[86]

E. L. Lawler, Recent results in the theory of machine scheduling,, In: A. Bachem, (1983), 202. Google Scholar

[87]

E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Erratum: Minimizing maximum lateness in a two-machine open shop,, Maths. Operations Research, 7 (1982). doi: 10.1287/moor.7.4.635. Google Scholar

[88]

E. L. Lawler, J. K. Lenstra and A. H. G. Rinnovy Kan, Minimizing maximum lateness in a two-machine open shop,, Math. Operations Research, 6 (1981), 153. doi: 10.1287/moor.6.1.153. Google Scholar

[89]

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, Sequencing and scheduling: Algorithms and complexity,, In: S.C. Graves, (1993), 445. Google Scholar

[90]

D. Lei, Multi-objective production scheduling: A survey,, International Journal of Advance Manufacturing Technology, 43 (2009), 926. Google Scholar

[91]

J. K. Lenstra, Production Scheduling,, Mathematisch Centrum, (1977). Google Scholar

[92]

J. K. Lenstra, A. H. G. Rinnooy and P. Brucker, Complexity of machine scheduling problems,, Annals of Discrete Mathematics, 1 (1977), 343. Google Scholar

[93]

J. Y. T. Leung, H. Li and M. Pinedo, Scheduling orders for multiple product types with due dates related objectives,, European Journal of Operational Research, 168 (2006), 370. doi: 10.1016/j.ejor.2004.03.030. Google Scholar

[94]

J. Y. T. Leung and V. K. M. Yu, Heuristic for minimizing the number of late jobs on two processors,, International Journal on Foundations of Computer Science, 5 (1995), 261. Google Scholar

[95]

C. L. Li, T. C. E. Cheng and Z. L. Chen, Single machine scheduling to minimize the weighted number of early and tardy agreeable jobs,, Computers and Operations Research, 22 (1995), 205. Google Scholar

[96]

C. L. Li, A heuristic for parallel machine scheduling with agreeable due dates to minimize the number of late jobs,, Computers and Operations Research, 22 (1995), 277. Google Scholar

[97]

B. M. T. Lin and A. A. K. Jeng, Parallel machine batch scheduling to minimize the maximum lateness and the number of tardy jobs,, International Journal of Production Economics, 91 (2004), 121. Google Scholar

[98]

B. M. T. Lin and A. V. Kononov, Customer order scheduling to minimize the number of late jobs,, European Journal of Operational Research, 183 (2007), 944. Google Scholar

[99]

B. M. T. Lin, Scheduling in the two-machine flow shop with due date constraints,, Journal of Production Economics, 70 (2001), 117. Google Scholar

[100]

R. Linn and W. Zhang, Hybrid flow shop scheduling. a survey,, Computers and Industrial Engineering, 37 (1999), 57. Google Scholar

[101]

C. Y. Liu and R. L. Bulfin, Scheduling open shops with unit execution times to minimize functions of due dates,, Operations Research, 36 (1988), 553. doi: 10.1287/opre.36.4.553. Google Scholar

[102]

M. Liu and C. Wu, Scheduling algorithm based on evolutionary computing in identical parallel machine production line,, Robotics and Computer Integrated Manufacturing, 19 (2003), 401. Google Scholar

[103]

E. Lodree, W. Jang and C. M. Klein, A new rule for minimizing the weighted number of tardy jobs in dynamic flow shops,, European Journal of Operational Research, 159 (2004), 258. doi: 10.1016/S0377-2217(03)00404-1. Google Scholar

[104]

R. M'Hallah and R. L. Bulfin, Minimizing the weighted number of tardy jobs on parallel processors,, European Journal of Operational Research, 160 (2005), 471. doi: 10.1016/j.ejor.2003.06.027. Google Scholar

[105]

M. Mathirajan and A. J. Sivakumar, A literature review, classification and simple meta-analysis on scheduling of batch processors in semi-conductor,, International Journal of Advance Manufacturing Technology, 29 (2006), 990. Google Scholar

[106]

M. Middendorf and V. G. Timkovsky, Transversal graphs for partially ordered sets: Sequencing, merging and scheduling problems,, Journal of Combinatorial Optimization, 3 (1999), 417. doi: 10.1023/A:1009827520712. Google Scholar

[107]

J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs,, Management Science, 15 (1968), 102. Google Scholar

[108]

G. Mosheiov and D. Oron, Minimizing the number of tardy jobs on a proportionate flowshop with general position-dependent processing times,, Computers and Operational Research, 39 (2012), 1601. doi: 10.1016/j.cor.2011.09.011. Google Scholar

[109]

G. Mosheiov and A. Sarig, Minimum weighted number of tardy jobs on m-machine flow-shop,, European Journal of Operational Research, 201 (2010), 404. doi: 10.1016/j.ejor.2009.03.018. Google Scholar

[110]

A. Nagar, J. Haddock and S. Heragu, Multiple and bicriteria scheduling: A literature survey,, European Journal of Operational Research, 81 (1995), 88. Google Scholar

[111]

C. T. Ng, T. C. E. Cheng and J. J. Yuan, Concurrent Open Shop Scheduling to Minimize the Weighted Number of Tardy Jobs,, Journal of Scheduling, 6 (2003), 405. doi: 10.1023/A:1024284828374. Google Scholar

[112]

H. Ohta and T. Nakatani, A heuristic job shop scheduling algorithm to minimize the total holding of completed and in-process products subject to no tardy jobs,, International Journal of Production Economics, 101 (2006), 19. Google Scholar

[113]

M. Park and Y. Kim, Search heuristics for a parallel machine scheduling problem with ready times and due dates,, Computers Industrial Engineering, 33 (1997), 793. Google Scholar

[114]

C. N. Potts and M. V. Kovalyov, Scheduling with batching: A review,, European Journal of Operational Research, 120 (2000), 228. doi: 10.1016/S0377-2217(99)00153-8. Google Scholar

[115]

C. N. Potts and V. Wassenhove, Integrating scheduling with batching and lot-sizing: A review of algorithms and complexity,, Journal of Operations Research Society, 43 (1992), 395. Google Scholar

[116]

T. A. Reomer, A note on the complexity of the concurrent open shop problem,, Journal of Scheduling, 9 (2006), 389. doi: 10.1007/s10951-006-7042-y. Google Scholar

[117]

A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations,, Nijhoff, (1976). doi: 10.1007/978-1-4613-4383-7. Google Scholar

[118]

A. J. Ruiz-Torres, J. H. Ablanedo-Rsas and J. C. Ho, Minimizing the number of tardy jobs in the flowshop problem with operational and resource flexibility,, Computers and Operational Research, 37 (2010), 282. doi: 10.1016/j.cor.2009.04.018. Google Scholar

[119]

A. J. Ruiz-Torres and G. Centeno, Minimizing the number of late jobs for the permutation flowshop problem with secondary resources,, Computers and Operational Research, 35 (2008), 1227. doi: 10.1016/j.cor.2006.07.013. Google Scholar

[120]

A. J. Ruiz-Torres, E. E. Enscore and R. R. Barton, Simulated annealing heuristics for the average flow time and number of tardy jobs bi-criteria identical parallel machine problem,, Computers and Industrial Engineering, 33 (1997), 257. Google Scholar

[121]

A. J. Ruiz-Torres, F. J. López and J. C. Ho, Scheduling uniform parallel machines subjected to a secondary resource to minimize the number of tardy jobs,, European Journal of Operational Research, 179 (2007), 302. Google Scholar

[122]

P. Senthilkumar and S. Narayanan, Literature review of single machine scheduling problem with uniform parallel machines,, Intelligent Information Management, 2 (2010), 457. Google Scholar

[123]

M. Sevaux and K. Sörensen, VNS/TS for a Parallel Machine Scheduling Problem,, MEC-VNS: 18th Mini Euro Conference pm VNS, (2005). Google Scholar

[124]

M. Sevaux and P. Thomin, Heuristics and metaheuristics for a parallel machine scheduling problem: A computational evaluation,, Proceedings of 4th Metaheuristics International Conference, (2001), 411. Google Scholar

[125]

D. Shabtay and Y. Bensoussan, Maximizing the weighted number of just-in-time jobs in several two machine scheduling systems,, Journal of Scheduling, 15 (2012), 39. doi: 10.1007/s10951-010-0204-y. Google Scholar

[126]

D. Shabtay, Y. Bensoussan and M. Kaspi, A bicriteria approach to maximize the weighted number of just-in-time jobs and to minimize the total resource consumption cost in a two-machine flowshop scheduling system,, International Journal of Production Economics, 136 (2012), 67. Google Scholar

[127]

R. Sitters, Complexity of preemptive minsum scheduling on unrelated parallel machines,, Journal of Algorithms, 57 (2005), 37. doi: 10.1016/j.jalgor.2004.06.011. Google Scholar

[128]

Y. N. Sotskov, The complexity of shop scheduling problems with two or three jobs,, European Journal of Operational Research, 53 (1991), 326. Google Scholar

[129]

S. Sriram, C. Mala and N. P. Gopalan, Online Parallel Machine Scheduling with Hard Deadlines,, International Journal of Recent Trends in Engineering, 2 (2009), 263. Google Scholar

[130]

G. A. Süer, Minimizing the number of tardy jobs in multi-period cell loading problems,, Computers and Industrial Engineering, 33 (1997), 721. Google Scholar

[131]

G. A. Süer, Z. Czajkiewicz and E. Baez, Minimizing the Number of Tardy Jobs in Identical Machine Scheduling,, Proceedings of the 15th Conference on Computers and Industrial Engineering, (1993). Google Scholar

[132]

G. A. Süer, F. Pico and A. Santiago, Identical machine scheduling to minimize the number of tardy jobs when lost-splitting is allowed,, Computers Industrial Engineering, 33 (1997), 271. Google Scholar

[133]

S. C. Sung and M. Vlach, Just-In-Time Scheduling on Parallel Machines,, The European Operational Research Conference, (2001). Google Scholar

[134]

V. T'Kindt, F. D. Croce and J. L. Bouquard, Enumerating of pareto optima for a flowshop scheduling problem with two criteria,, Journal of Computing, 19 (2007), 64. doi: 10.1287/ijoc.1050.0167. Google Scholar

[135]

V. G. Timkorsky, Is a unit-time job shop not easier than identical parallel machines?,, Discrete Applied Mathematics, 85 (1998), 149. doi: 10.1016/S0166-218X(98)00032-8. Google Scholar

[136]

V. G. Timkorsky, Identical parallel machines vs. unit time shops and preemptions vs. chains in scheduling complexity,, European Journal of Operational Research, 149 (2003), 355. doi: 10.1016/S0377-2217(02)00767-1. Google Scholar

[137]

H. Ucar and M. F. Tasgetiren, A particle swarm optimization algorithm for permutation flow shop sequencing problem with the number of tardy jobs criterion,, Proceedings of 5th International Symposium of Intelligent Manufacturing Systems, (2006), 1110. Google Scholar

[138]

J. M. Van Den Akker, J. A. Hoogeveen and S. L. Van De Velde, Parallel machine scheduling by column generation,, Operations Research, 47 (1999), 862. doi: 10.1287/opre.47.6.862. Google Scholar

[139]

M. Van der Akker and H. Hoogeveen, Minimizing the Number of Tardy Jobs, In J.Y.-T. Leung (Ed),, Handbook of Scheduling: Algorithms, (2004). Google Scholar

[140]

F. Vargas-Nieto and J. R. Montoya-Torres, Scheduling a Thermal-Printed Label Manufacturing Plant Using an Evolutionary Algorithm,, 19th Proceedings International Conference on Production Research (ICPR-19), (2007). Google Scholar

[141]

E. Wagneur and C. Sriskandarajah, Open shops with job overlap,, European Journal of Operational Research, 71 (1993), 366. Google Scholar

[142]

I. L. Wang, Y. C. Wang and C. W. Chen, Scheduling unrelated parallel machines in semiconductor manufacturing by problem reduction and local search heuristics,, Flexible Services and Manufacturing Journal, 25 (2012), 343. Google Scholar

[143]

J. B. Wang and Z. Q. Xia, No wait or no idle permutation flowshop scheduling with dominating machines,, Journal of Applied Mathematics and Computing, 17 (2005), 419. doi: 10.1007/BF02936066. Google Scholar

[144]

S. Webster and K. R. Baker, Scheduling groups of jobs on a single machine,, Operations Research, 43 (1995), 692. doi: 10.1287/opre.43.4.692. Google Scholar

[145]

S. Xiang, G. Tang and T. C. E. Cheng, Solvable cases of permutation flowshop scheduling with dominating machines,, International Journal of Production Economics, 66 (2000), 53. Google Scholar

[146]

W. H. Yang and C. J. Liao, Survey of scheduling research involving setup times,, International Journal of Systems Sciences, 30 (1999), 143. Google Scholar

[147]

B. P. C. Yen and G. Wan, Single machine bicriteria scheduling: A survey,, Industrial Engineering: Theory, 10 (2003), 222. Google Scholar

[148]

W. K. Yeung, C. Oğuz and T. C. E. Cheng, Two-machine flow shop scheduling with common due window to minimize weighted number of early and tardy jobs,, Naval Research Logistics, 56 (2009), 593. doi: 10.1002/nav.20356. Google Scholar

[1]

Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391

[2]

Ethel Mokotoff. Algorithms for bicriteria minimization in the permutation flow shop scheduling problem. Journal of Industrial & Management Optimization, 2011, 7 (1) : 253-282. doi: 10.3934/jimo.2011.7.253

[3]

Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial & Management Optimization, 2016, 12 (2) : 703-717. doi: 10.3934/jimo.2016.12.703

[4]

Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai. An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2015-2031. doi: 10.3934/jimo.2017029

[5]

Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-34. doi: 10.3934/jimo.2019030

[6]

Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. Vega-Mejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-27. doi: 10.3934/jimo.2019088

[7]

Mostafa Abouei Ardakan, A. Kourank Beheshti, S. Hamid Mirmohammadi, Hamed Davari Ardakani. A hybrid meta-heuristic algorithm to minimize the number of tardy jobs in a dynamic two-machine flow shop problem. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 465-480. doi: 10.3934/naco.2017029

[8]

Zhichao Geng, Jinjiang Yuan. Scheduling family jobs on an unbounded parallel-batch machine to minimize makespan and maximum flow time. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1479-1500. doi: 10.3934/jimo.2018017

[9]

Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial & Management Optimization, 2014, 10 (1) : 259-273. doi: 10.3934/jimo.2014.10.259

[10]

Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 613-620. doi: 10.3934/jimo.2014.10.613

[11]

Yang Woo Shin, Dug Hee Moon. Throughput of flow lines with unreliable parallel-machine workstations and blocking. Journal of Industrial & Management Optimization, 2017, 13 (2) : 901-916. doi: 10.3934/jimo.2016052

[12]

Bin Zheng, Min Fan, Mengqi Liu, Shang-Chia Liu, Yunqiang Yin. Parallel-machine scheduling with potential disruption and positional-dependent processing times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 697-711. doi: 10.3934/jimo.2016041

[13]

Tapabrata Ray, Ruhul Sarker. EA for solving combined machine layout and job assignment problems. Journal of Industrial & Management Optimization, 2008, 4 (3) : 631-646. doi: 10.3934/jimo.2008.4.631

[14]

M. Ramasubramaniam, M. Mathirajan. A solution framework for scheduling a BPM with non-identical job dimensions. Journal of Industrial & Management Optimization, 2007, 3 (3) : 445-456. doi: 10.3934/jimo.2007.3.445

[15]

Xianzhao Zhang, Dachuan Xu, Donglei Du, Cuixia Miao. Approximate algorithms for unrelated machine scheduling to minimize makespan. Journal of Industrial & Management Optimization, 2016, 12 (2) : 771-779. doi: 10.3934/jimo.2016.12.771

[16]

Zhao-Hong Jia, Ting-Ting Wen, Joseph Y.-T. Leung, Kai Li. Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 977-993. doi: 10.3934/jimo.2016057

[17]

Xavier Litrico, Vincent Fromion. Modal decomposition of linearized open channel flow. Networks & Heterogeneous Media, 2009, 4 (2) : 325-357. doi: 10.3934/nhm.2009.4.325

[18]

Ji-Bo Wang, Mengqi Liu, Na Yin, Ping Ji. Scheduling jobs with controllable processing time, truncated job-dependent learning and deterioration effects. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1025-1039. doi: 10.3934/jimo.2016060

[19]

Güvenç Şahin, Ravindra K. Ahuja. Single-machine scheduling with stepwise tardiness costs and release times. Journal of Industrial & Management Optimization, 2011, 7 (4) : 825-848. doi: 10.3934/jimo.2011.7.825

[20]

Hua-Ping Wu, Min Huang, W. H. Ip, Qun-Lin Fan. Algorithms for single-machine scheduling problem with deterioration depending on a novel model. Journal of Industrial & Management Optimization, 2017, 13 (2) : 681-695. doi: 10.3934/jimo.2016040

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]