• Previous Article
    Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays
  • JIMO Home
  • This Issue
  • Next Article
    Optimal rebate strategies in a two-echelon supply chain with nonlinear and linear multiplicative demands
October  2016, 12(4): 1557-1585. doi: 10.3934/jimo.2016.12.1557

Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan

1. 

School of Business Information, Shanghai University of International Business and Economics, Shanghai 201620, China

2. 

School of Statistics and Research Centre of International Finance and Risk Management, East China Normal University, Shanghai 200241, China

3. 

School of Statistics, Faculty of Economics and Management, East China Normal University, Shanghai 200241, China

Received  October 2013 Revised  October 2015 Published  January 2016

In this paper, we investigate the consumption-investment problem for a member of the defined contribution pension plan with non-constant time preferences. The aim of the member is to maximize the discounted utility of the consumption. It leads to a time-inconsistent control problem in the sense that the Bellman optimality principle does no longer hold. In our model, the contribution rate is assumed to be a fixed proportion of the scheme member's salary, and the pension fund can be invested in a risk-free asset, an index bond and a stock whose return follows a geometric Brownian motion. Two utility functions are considered: the power utility and the logarithmic utility. We characterize the time-consistent equilibrium consumption-investment strategies and the value function in terms of a solution of an integral equation in both situations. The existence and uniqueness of the solution is verified and the approximation of the solution is obtained. We present some numerical results of the equilibrium consumption rate and equilibrium investment policy with three types of discount functions.
Citation: Qian Zhao, Rongming Wang, Jiaqin Wei. Time-inconsistent consumption-investment problem for a member in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1557-1585. doi: 10.3934/jimo.2016.12.1557
References:
[1]

G. Ainslie, Picoeconomics,, Cambridge University Press, (1992). Google Scholar

[2]

R. Barro, Ramsey meets Laibson in the neoclassical growth model,, Quarterly Journal of Economics, 114 (1999), 1125. doi: 10.1162/003355399556232. Google Scholar

[3]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, 2010,, Working Paper, (). Google Scholar

[4]

T. Björk, A. Murgoci and X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion,, Mathematical Finance, 24 (2014), 1. doi: 10.1111/j.1467-9965.2011.00515.x. Google Scholar

[5]

Z. Bodiei, A. Marcus and R. Merton, Defined benefit versus defined contribution pension plans: What are the real trade-offs?,, in Pensions in the US Economy, (1988), 139. Google Scholar

[6]

A. Cairns, D. Blake and K. Dowd, Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans,, Journal of Economic Dynamics and Control, 30 (2006), 843. doi: 10.1016/j.jedc.2005.03.009. Google Scholar

[7]

I. Ekeland and A. Lazrak, Being serious about non-commitment: Subgame perfect equilibrium in continuous time, 2006,, Preprint. University of British Columbia., (). Google Scholar

[8]

I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management,, SIAM Journal on Financial Mathematics, 3 (2012), 1. doi: 10.1137/100810034. Google Scholar

[9]

I. Ekeland and T. Pirvu, Investment and consumption without commitment,, Mathematics and Financial Economics, 2 (2008), 57. doi: 10.1007/s11579-008-0014-6. Google Scholar

[10]

P. Emms, Lifetime investment and consumption using a defined-contribution pension scheme,, Journal of Economic Dynamics and Control, 36 (2012), 1303. doi: 10.1016/j.jedc.2012.01.012. Google Scholar

[11]

S. Goldman, Consistent plans},, Review of Financial Studies, 47 (1980), 533. doi: 10.2307/2297304. Google Scholar

[12]

S. Haberman and E. Vigna, Optimal investment strategies and risk measures in defined contribution pension schemes,, Insurance: Mathematics and Economics, 31 (2002), 35. doi: 10.1016/S0167-6687(02)00128-2. Google Scholar

[13]

L. He and Z. Liang, Optimal dynamic asset allocation strategy for ELA scheme of DC pension plan during the distribution phase,, Insurance: Mathematics and Economics, 52 (2013), 404. doi: 10.1016/j.insmatheco.2013.02.005. Google Scholar

[14]

D. Laibson, Golden eggs and hyperbolic discounting,, Quarterly Journal of Economics, 112 (1997), 443. doi: 10.1162/003355397555253. Google Scholar

[15]

D. Laibson, Life-cycle consumption and hyperbolic discount functions,, European Economic Review, 42 (1998), 861. doi: 10.1016/S0014-2921(97)00132-3. Google Scholar

[16]

D. Laibson, A. Repetto and J. Tobacman, Self-control and saving for retirement,, Brookings Papers on Economic Activity, 1998 (1998), 91. doi: 10.2307/2534671. Google Scholar

[17]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation,, Quarterly Journal of Economics, 107 (1992), 573. doi: 10.2307/2118482. Google Scholar

[18]

J. Marín-Solano and J. Navas, Consumption and portfolio rules for time-inconsistent investors,, European Journal of Operational Research, 201 (2010), 860. doi: 10.1016/j.ejor.2009.04.005. Google Scholar

[19]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247. doi: 10.2307/1926560. Google Scholar

[20]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373. doi: 10.1016/0022-0531(71)90038-X. Google Scholar

[21]

B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Financial Studies, 40 (1973), 391. doi: 10.2307/2296458. Google Scholar

[22]

E. Phelps and R. Pollak, On second-best national saving and game-equilibrium growth,, Review of Economic Studies, 35 (1968), 185. Google Scholar

[23]

R. Pollak, Consistent planning,, Review of Financial Studies, 35 (1968), 201. doi: 10.2307/2296548. Google Scholar

[24]

T. Siu, A BSDE approach to risk-based asset allocation of pension funds with regime switching,, Annals of Operations Research, 201 (2012), 449. doi: 10.1007/s10479-012-1211-5. Google Scholar

[25]

R. Strotz, Myopia and inconsistency in dynamic utility maximization,, Review of Economic Studies, 23 (1955), 165. doi: 10.2307/2295722. Google Scholar

[26]

R. Thaler, Some empirical evidence on dynamic inconsistency,, Economics Letters, 8 (1981), 201. doi: 10.1016/0165-1765(81)90067-7. Google Scholar

[27]

A. Zhang, R. Korn and C. Ewald, Optimal management and inflation protection for defined contribution pension plans,, Blätter der DGVFM, 28 (2007), 239. doi: 10.1007/s11857-007-0019-x. Google Scholar

[28]

Q. Zhao, Y. Shen and J. Wei, Consumption-investment strategies with non-exponential discounting and logarithmic utility,, European Journal of Operational Research, 238 (2014), 824. doi: 10.1016/j.ejor.2014.04.034. Google Scholar

show all references

References:
[1]

G. Ainslie, Picoeconomics,, Cambridge University Press, (1992). Google Scholar

[2]

R. Barro, Ramsey meets Laibson in the neoclassical growth model,, Quarterly Journal of Economics, 114 (1999), 1125. doi: 10.1162/003355399556232. Google Scholar

[3]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, 2010,, Working Paper, (). Google Scholar

[4]

T. Björk, A. Murgoci and X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion,, Mathematical Finance, 24 (2014), 1. doi: 10.1111/j.1467-9965.2011.00515.x. Google Scholar

[5]

Z. Bodiei, A. Marcus and R. Merton, Defined benefit versus defined contribution pension plans: What are the real trade-offs?,, in Pensions in the US Economy, (1988), 139. Google Scholar

[6]

A. Cairns, D. Blake and K. Dowd, Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans,, Journal of Economic Dynamics and Control, 30 (2006), 843. doi: 10.1016/j.jedc.2005.03.009. Google Scholar

[7]

I. Ekeland and A. Lazrak, Being serious about non-commitment: Subgame perfect equilibrium in continuous time, 2006,, Preprint. University of British Columbia., (). Google Scholar

[8]

I. Ekeland, O. Mbodji and T. Pirvu, Time-consistent portfolio management,, SIAM Journal on Financial Mathematics, 3 (2012), 1. doi: 10.1137/100810034. Google Scholar

[9]

I. Ekeland and T. Pirvu, Investment and consumption without commitment,, Mathematics and Financial Economics, 2 (2008), 57. doi: 10.1007/s11579-008-0014-6. Google Scholar

[10]

P. Emms, Lifetime investment and consumption using a defined-contribution pension scheme,, Journal of Economic Dynamics and Control, 36 (2012), 1303. doi: 10.1016/j.jedc.2012.01.012. Google Scholar

[11]

S. Goldman, Consistent plans},, Review of Financial Studies, 47 (1980), 533. doi: 10.2307/2297304. Google Scholar

[12]

S. Haberman and E. Vigna, Optimal investment strategies and risk measures in defined contribution pension schemes,, Insurance: Mathematics and Economics, 31 (2002), 35. doi: 10.1016/S0167-6687(02)00128-2. Google Scholar

[13]

L. He and Z. Liang, Optimal dynamic asset allocation strategy for ELA scheme of DC pension plan during the distribution phase,, Insurance: Mathematics and Economics, 52 (2013), 404. doi: 10.1016/j.insmatheco.2013.02.005. Google Scholar

[14]

D. Laibson, Golden eggs and hyperbolic discounting,, Quarterly Journal of Economics, 112 (1997), 443. doi: 10.1162/003355397555253. Google Scholar

[15]

D. Laibson, Life-cycle consumption and hyperbolic discount functions,, European Economic Review, 42 (1998), 861. doi: 10.1016/S0014-2921(97)00132-3. Google Scholar

[16]

D. Laibson, A. Repetto and J. Tobacman, Self-control and saving for retirement,, Brookings Papers on Economic Activity, 1998 (1998), 91. doi: 10.2307/2534671. Google Scholar

[17]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation,, Quarterly Journal of Economics, 107 (1992), 573. doi: 10.2307/2118482. Google Scholar

[18]

J. Marín-Solano and J. Navas, Consumption and portfolio rules for time-inconsistent investors,, European Journal of Operational Research, 201 (2010), 860. doi: 10.1016/j.ejor.2009.04.005. Google Scholar

[19]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case,, The Review of Economics and Statistics, 51 (1969), 247. doi: 10.2307/1926560. Google Scholar

[20]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373. doi: 10.1016/0022-0531(71)90038-X. Google Scholar

[21]

B. Peleg and M. Yaari, On the existence of a consistent course of action when tastes are changing,, Review of Financial Studies, 40 (1973), 391. doi: 10.2307/2296458. Google Scholar

[22]

E. Phelps and R. Pollak, On second-best national saving and game-equilibrium growth,, Review of Economic Studies, 35 (1968), 185. Google Scholar

[23]

R. Pollak, Consistent planning,, Review of Financial Studies, 35 (1968), 201. doi: 10.2307/2296548. Google Scholar

[24]

T. Siu, A BSDE approach to risk-based asset allocation of pension funds with regime switching,, Annals of Operations Research, 201 (2012), 449. doi: 10.1007/s10479-012-1211-5. Google Scholar

[25]

R. Strotz, Myopia and inconsistency in dynamic utility maximization,, Review of Economic Studies, 23 (1955), 165. doi: 10.2307/2295722. Google Scholar

[26]

R. Thaler, Some empirical evidence on dynamic inconsistency,, Economics Letters, 8 (1981), 201. doi: 10.1016/0165-1765(81)90067-7. Google Scholar

[27]

A. Zhang, R. Korn and C. Ewald, Optimal management and inflation protection for defined contribution pension plans,, Blätter der DGVFM, 28 (2007), 239. doi: 10.1007/s11857-007-0019-x. Google Scholar

[28]

Q. Zhao, Y. Shen and J. Wei, Consumption-investment strategies with non-exponential discounting and logarithmic utility,, European Journal of Operational Research, 238 (2014), 824. doi: 10.1016/j.ejor.2014.04.034. Google Scholar

[1]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control & Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[2]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-24. doi: 10.3934/jimo.2018147

[3]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[4]

Chuangwei Lin, Li Zeng, Huiling Wu. Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase. Journal of Industrial & Management Optimization, 2019, 15 (1) : 401-427. doi: 10.3934/jimo.2018059

[5]

Jérôme Buzzi, Véronique Maume-Deschamps. Decay of correlations on towers with non-Hölder Jacobian and non-exponential return time. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 639-656. doi: 10.3934/dcds.2005.12.639

[6]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[7]

Huiling Wu, Xiuguo Wang, Yuanyuan Liu, Li Zeng. Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-34. doi: 10.3934/jimo.2019084

[8]

John A. D. Appleby, Alexandra Rodkina, Henri Schurz. Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 667-696. doi: 10.3934/dcdsb.2006.6.667

[9]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[10]

Yanbin Tang, Ming Wang. A remark on exponential stability of time-delayed Burgers equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 219-225. doi: 10.3934/dcdsb.2009.12.219

[11]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[12]

Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413

[13]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[14]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[15]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[16]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[17]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[18]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[19]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[20]

Felipe Rivero. Time dependent perturbation in a non-autonomous non-classical parabolic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 209-221. doi: 10.3934/dcdsb.2013.18.209

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]