\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method

Abstract / Introduction Related Papers Cited by
  • This work concerns the robust stabilization of a class of ``Quasi-Lipschitz" nonlinear uncertain systems governed by stochastic Differential Equations (SDE) subject to both multiplicative and additive stochastic noises modeled by a vector Brownian motion. The state-vector is admitted to be non-completely available, and be estimated by a Luenberger-type filter. The stabilization around the origin is realized by a linear feedback proportional to the current state-estimates. First, the class of feedback matrices and filter matrix-gains, providing the boundedness of the stochastic trajectories with probability one in a vicinity of the origin, is specified. Then a corresponding ellipsoid, containing these trajectories, is found. Its ``size" (the trace of the ellipsoid matrix) is derived as a function of the applied gain matrices. To make this ellipsoid ``as small as possible" the corresponding constrained optimization problem is suggested to be solved. These constraints are given by a system of Matrix Inequalities (MI's) which under a specific change of variables may be converted into a conventional system of Bilinear Matrix Inequalities (BMI's). The last may be resolved by the standard MATLAB toolboxes such as ``penbmiTL, Tomlab toolbox". Finally, a numerical example, containing the arctangent-type nonlinearities, is presented to illustrate the effectiveness of the suggested methodology.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Alazki and A. Poznyak, Inventory constraint control with uncertain stochastic demands: Attractive ellipsoid technique application, IMA Journal of Mathematical Control and Information, 29 (2012), 399-425.doi: 10.1093/imamci/dnr038.

    [2]

    J. A. Appleby and A. Flynn, Stabilization of volterra equations by noise, The Journal of Applied Mathematics and Stochastic Analysis, (2006), Art. ID 89729, 29 pp.doi: 10.1155/JAMSA/2006/89729.

    [3]

    L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems, The Journal of Differential Equations, 177 (2001), 235-265.doi: 10.1006/jdeq.2000.3991.

    [4]

    M. Bardi and D. I. Capuzzo, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications, Birkhauser, Boston, 1997.doi: 10.1007/978-0-8176-4755-1.

    [5]

    D. P. Bertsekas, Infinite time reachability of state-space regions by using feedback control, IEEE Trans. on Automatic Control, 17 (1994), 604-613.

    [6]

    A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511526503.

    [7]

    F. Blanchini, Set invariance in control - a survey, Automatica J. IFAC, 35 (1999), 1747-1767.doi: 10.1016/S0005-1098(99)00113-2.

    [8]

    F. Blanchini and S. Miani, Set Theoretic Methods in Control, Systems & Control: Foundations & Applications. Birkhauser Boston Inc., Boston, MA, 2008.

    [9]

    A. El Bouhtouri and K. El Hadri, Robust stabilization of jump linear systems with multiplicative noise, IMA Journal of Mathematical Control and Information, 20 (2003), 1-19.doi: 10.1093/imamci/20.1.1.

    [10]

    M. Davis, Linear Estimation and Stochastic Control, Champman and Hall, New York, 1977.

    [11]

    T. Duncan and P. Varaiya, On the solution of a stochastic control system, SIAM J. Control, 9 (1971), 354-371.doi: 10.1137/0309026.

    [12]

    W. Fleming and R. Rishel, Optimal Deterministic and Stochastic Control, Springer- Verlag, Berlin, 1975.

    [13]

    U. Haussman, Some examples of optimal control, Or: Stochastic maximum principal at work, SIAM Rev., 23 (1981), 292-307.doi: 10.1137/1023062.

    [14]

    K. Holmstrom, A. Goran and M. Edvall, User's Guide for TOMLAB/CPLEX, v12.1, (2009).

    [15]

    N. V. Krylov, Controlled Diffusion Process, Springer, New York. 1980.

    [16]

    A. Kurzhanskii and I. Valyi, Ellipsoidal Calculus for Estimation and Control, Birkhauser, Boston, MA, 1997.doi: 10.1007/978-1-4612-0277-6.

    [17]

    H. Kushner, Necessary condition for continuous parameter stochastic optimization problems, SIAM J. Control, 10 (1972), 550-565.doi: 10.1137/0310041.

    [18]

    D. G. Luenberger, An introduction to observers, IEEE Transactions on Automatic Control, 16 (1971), 596-602.

    [19]

    S. A. Nazin, B. T. Polyak and M. V. Tpopunov, Rejection of bounded exogenous disturbances by the method of invariant ellipsoids, Autom. Remote Control, 68 (2007), 467-486.doi: 10.1134/S0005117907030083.

    [20]

    Y. Nesterov and A. Nemirovsky, Interior-Point Polynomial Methods in Convex Programming, SIAM, 1994.

    [21]

    B. Polyak, A. V. Nazin, M. V. Topunov and S. A. Nazin, Rejection of bounded disturbances via invariant ellipsoids technique, In Proc. 45th IEEE Conf. Decision Contr., San Diego. USA, (2006), 1429-1434.

    [22]

    A. Polyakov and A. Poznyak, Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control, Automatica, 47 (2011), 1450-1454.

    [23]

    A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques, Vol. 1. Elsevier, London - New York, 2008.

    [24]

    A. S. Poznyak, Advanced Mathematical Tools for Automatic Control Engineers: Stochastic Techniques, Vol. 2. Elsevier, London - New York, 2009.

    [25]

    A. S. Poznyak, T. E. Duncan, B. Pasik-Duncan and V. G. Boltyanskii, Robust stochastic maximum principle for multi-model worst case optimization, International Journal of Control, 75 (2002), 1032-1048.doi: 10.1080/00207170210156251.

    [26]

    F. Schweppe, Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs, N.J., 1973.

    [27]

    V. A. Ugrinovskii, Robust H infinity control in the presence of stochastic uncertainty, International Journal of Control, 71 (1998), 219-237.doi: 10.1080/002071798221849.

    [28]

    J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, 1999.doi: 10.1007/978-1-4612-1466-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return