• Previous Article
    Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims
  • JIMO Home
  • This Issue
  • Next Article
    Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems
January  2016, 12(1): 17-29. doi: 10.3934/jimo.2016.12.17

Global stabilization for ball-and-beam systems via state and partial state feedback

1. 

School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

2. 

Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845

Received  June 2014 Revised  October 2014 Published  April 2015

In this paper, we present new state and partial state feedback laws as global stabilizers of the well-known frictionless ball and beam system. Dealing with nonlinear terms in the manner different from the ones in the literature, we have achieved a new, simple state-dependent saturation control law. The key technique is to assign a suitable state-dependent saturation level function and jointly use the computation techniques of linear gains. Then, combining such a state feedback law with a homogeneous observer, we again obtain a new partial state feedback design.
Citation: Huawen Ye, Honglei Xu. Global stabilization for ball-and-beam systems via state and partial state feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 17-29. doi: 10.3934/jimo.2016.12.17
References:
[1]

D. Angeli and E. D. Sontag, Forward completeness, unboundedness observability, and their Lyapunov characterizations,, Systems and Control Letters, 38 (1999), 209. doi: 10.1016/S0167-6911(99)00055-9. Google Scholar

[2]

C. Barbu, R. Sepulchre, P. V. Kokotovic and W. Lin, Global asymptotic stabilization of the ball-and-beam model,, in IEEE Conf. Decision Contr., (1997), 2351. Google Scholar

[3]

Y. H. Chang, C. W. Chang, C. W. Tao, H. W. Lin and J. S. Taur, Fuzzy sliding-mode controlfor ball and beam system with fuzzy ant colony optimization,, Expert Systems with Applications, 39 (2012), 3624. Google Scholar

[4]

A. Chen, J. Cao and L. Huang, An estimation of upper bound of delays for global asymptotic stability of delayed Hopfield neural networks,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 49 (2002), 1028. doi: 10.1109/TCSI.2002.800841. Google Scholar

[5]

T. L. Chien, C. C. Chen, M. C. Tsai and Y. C. Chen, Control of AMIRA's ball and beam system via improved fuzzy feedback linearization approach,, Applied Mathematical Modelling, 34 (2010), 3791. doi: 10.1016/j.apm.2010.03.020. Google Scholar

[6]

J. Hauser, S. Sastry and P. V. Kokotovic, Nonlinear control via approximate input-output linearization: The ball and beam example,, IEEE Transactions on Automatic Control, 37 (1992), 392. doi: 10.1109/9.119645. Google Scholar

[7]

Y. Hong, J. Huang and Y. Xu, On an output feedback finite-time stabilization problem,, IEEE Transactions on Automatic Control, 46 (2001), 305. doi: 10.1109/9.905699. Google Scholar

[8]

H. K. Khalil, Nonlinear Systems,, Prentice Hall, (2002). Google Scholar

[9]

X. Li and W. Yu, Synchronization of ball and beam systems with neural compensation,, International Journal of Control, 8 (2010), 491. Google Scholar

[10]

W. Lin and X. Li, Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent saturation,, Int. J. Control, 72 (1999), 1078. doi: 10.1080/002071799220434. Google Scholar

[11]

R. Ortega, M. W. Spong, F. Gomez-Estern and G. Blankenstein, Stabilization of a class of under-actuated mechanical system via interconnection and damping assignment,, IEEE Transactions on Automatic Control, 47 (2002), 1218. doi: 10.1109/TAC.2002.800770. Google Scholar

[12]

C. Qian, Global output feedback stabilization of a class of upper-triangular nonlinear systems,, in American Control Conference Hyatt Regency Riverfront, (2009), 3995. Google Scholar

[13]

S. Sastry, Nonlinear Systems: Analysis, Stability and Control,, Springer, (1999). doi: 10.1007/978-1-4757-3108-8. Google Scholar

[14]

R. Sepulchre, Slow peaking and low-gain designs for global stabilization of nonlinear systems,, IEEE Transactions on Automatic Control, 45 (2000), 453. doi: 10.1109/9.847724. Google Scholar

[15]

R. Sepulchre, M. Jankovic and P. V. Kokotovic, Constructive Nonlinear Control,, Springer, (1997). doi: 10.1007/978-1-4471-0967-9. Google Scholar

[16]

E. D. Sontag, Remarks on stabilization and input-to-state stability,, in IEEE Conf. Decision and Control, (1989), 1376. Google Scholar

[17]

A. R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls,, Systems and Control Letters, 18 (1992), 165. doi: 10.1016/0167-6911(92)90001-9. Google Scholar

[18]

A. R. Teel, Semi-global stabilization of the ball and beam using output feedback,, in American Control Conference, (1993), 2577. Google Scholar

[19]

H. Ye, H. Wang and H. B. Wang, Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique,, IEEE Transactions on Control Systems Technology, 15 (2007), 1143. Google Scholar

show all references

References:
[1]

D. Angeli and E. D. Sontag, Forward completeness, unboundedness observability, and their Lyapunov characterizations,, Systems and Control Letters, 38 (1999), 209. doi: 10.1016/S0167-6911(99)00055-9. Google Scholar

[2]

C. Barbu, R. Sepulchre, P. V. Kokotovic and W. Lin, Global asymptotic stabilization of the ball-and-beam model,, in IEEE Conf. Decision Contr., (1997), 2351. Google Scholar

[3]

Y. H. Chang, C. W. Chang, C. W. Tao, H. W. Lin and J. S. Taur, Fuzzy sliding-mode controlfor ball and beam system with fuzzy ant colony optimization,, Expert Systems with Applications, 39 (2012), 3624. Google Scholar

[4]

A. Chen, J. Cao and L. Huang, An estimation of upper bound of delays for global asymptotic stability of delayed Hopfield neural networks,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 49 (2002), 1028. doi: 10.1109/TCSI.2002.800841. Google Scholar

[5]

T. L. Chien, C. C. Chen, M. C. Tsai and Y. C. Chen, Control of AMIRA's ball and beam system via improved fuzzy feedback linearization approach,, Applied Mathematical Modelling, 34 (2010), 3791. doi: 10.1016/j.apm.2010.03.020. Google Scholar

[6]

J. Hauser, S. Sastry and P. V. Kokotovic, Nonlinear control via approximate input-output linearization: The ball and beam example,, IEEE Transactions on Automatic Control, 37 (1992), 392. doi: 10.1109/9.119645. Google Scholar

[7]

Y. Hong, J. Huang and Y. Xu, On an output feedback finite-time stabilization problem,, IEEE Transactions on Automatic Control, 46 (2001), 305. doi: 10.1109/9.905699. Google Scholar

[8]

H. K. Khalil, Nonlinear Systems,, Prentice Hall, (2002). Google Scholar

[9]

X. Li and W. Yu, Synchronization of ball and beam systems with neural compensation,, International Journal of Control, 8 (2010), 491. Google Scholar

[10]

W. Lin and X. Li, Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent saturation,, Int. J. Control, 72 (1999), 1078. doi: 10.1080/002071799220434. Google Scholar

[11]

R. Ortega, M. W. Spong, F. Gomez-Estern and G. Blankenstein, Stabilization of a class of under-actuated mechanical system via interconnection and damping assignment,, IEEE Transactions on Automatic Control, 47 (2002), 1218. doi: 10.1109/TAC.2002.800770. Google Scholar

[12]

C. Qian, Global output feedback stabilization of a class of upper-triangular nonlinear systems,, in American Control Conference Hyatt Regency Riverfront, (2009), 3995. Google Scholar

[13]

S. Sastry, Nonlinear Systems: Analysis, Stability and Control,, Springer, (1999). doi: 10.1007/978-1-4757-3108-8. Google Scholar

[14]

R. Sepulchre, Slow peaking and low-gain designs for global stabilization of nonlinear systems,, IEEE Transactions on Automatic Control, 45 (2000), 453. doi: 10.1109/9.847724. Google Scholar

[15]

R. Sepulchre, M. Jankovic and P. V. Kokotovic, Constructive Nonlinear Control,, Springer, (1997). doi: 10.1007/978-1-4471-0967-9. Google Scholar

[16]

E. D. Sontag, Remarks on stabilization and input-to-state stability,, in IEEE Conf. Decision and Control, (1989), 1376. Google Scholar

[17]

A. R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls,, Systems and Control Letters, 18 (1992), 165. doi: 10.1016/0167-6911(92)90001-9. Google Scholar

[18]

A. R. Teel, Semi-global stabilization of the ball and beam using output feedback,, in American Control Conference, (1993), 2577. Google Scholar

[19]

H. Ye, H. Wang and H. B. Wang, Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique,, IEEE Transactions on Control Systems Technology, 15 (2007), 1143. Google Scholar

[1]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Feedback stabilization of a coupled string-beam system. Networks & Heterogeneous Media, 2009, 4 (1) : 19-34. doi: 10.3934/nhm.2009.4.19

[2]

Meng Zhang, Kaiyuan Liu, Lansun Chen, Zeyu Li. State feedback impulsive control of computer worm and virus with saturated incidence. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1465-1478. doi: 10.3934/mbe.2018067

[3]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[4]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[5]

Fabio S. Priuli. State constrained patchy feedback stabilization. Mathematical Control & Related Fields, 2015, 5 (1) : 141-163. doi: 10.3934/mcrf.2015.5.141

[6]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[7]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

[8]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[9]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[10]

Kaïs Ammari, Mohamed Jellouli, Michel Mehrenberger. Erratum and addendum to "Feedback stabilization of a coupled string-beam system" by K. Ammari, M. Jellouli and M. Mehrenberger; N. H. M: 4 (2009), 19--34. Networks & Heterogeneous Media, 2011, 6 (4) : 783-784. doi: 10.3934/nhm.2011.6.783

[11]

Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4329-4360. doi: 10.3934/dcdsb.2018167

[12]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[13]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[14]

H. W. J. Lee, Y. C. E. Lee, Kar Hung Wong. Differential equation approximation and enhancing control method for finding the PID gain of a quarter-car suspension model with state-dependent ODE. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2019055

[15]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[16]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[17]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[18]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89

[19]

Thomas I. Seidman, Houshi Li. A note on stabilization with saturating feedback. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 319-328. doi: 10.3934/dcds.2001.7.319

[20]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]