• Previous Article
    A new approach for allocating fixed costs among decision making units
  • JIMO Home
  • This Issue
  • Next Article
    Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method
January  2016, 12(1): 187-209. doi: 10.3934/jimo.2016.12.187

Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate

1. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China

2. 

Lingnan (University) College/Sun Yat-sen Business School, Sun Yat-sen University, Guangzhou 510275

3. 

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada

Received  May 2014 Revised  December 2014 Published  April 2015

This paper studies dynamic asset allocation with stochastic interest rates and inflation rates under the continuous-time mean-variance model in a more general market that may be incomplete. First, by the Lagrange method and the dynamic programming approach, we derive the associated Hamilton-Jacobi-Bellman equation and solve it explicitly. Then, closed form expressions for the efficient strategy and the efficient frontier are derived by applying the Lagrange dual theory. In addition, we state a necessary and sufficient condition under which the efficient frontier is a straight line in the standard deviation-mean plane, and some degenerate cases are discussed. Finally, empirical analysis based on real data from the Chinese market is presented to illustrate applications of the results obtained in this paper.
Citation: Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187
References:
[1]

I. Bajeux-Besnainou and R. Portait, Dynamic asset allocation in a mean-variance framework, Management Science, 44 (1998), S79-S95. Google Scholar

[2]

T. R. Bielecki, H. Q. Jin, S. R. Pliska and X. Y. Zhou, Continuous-time mean-variance portfolio selection with bankruptcy prohibition, Mathematical Finance, 15 (2005), 213-244. doi: 10.1111/j.0960-1627.2005.00218.x.  Google Scholar

[3]

M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, Journal of Finance, 57 (2002), 1201-1238. doi: 10.1111/1540-6261.00459.  Google Scholar

[4]

T. Chellathurai and T. Draviam, Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory, Journal of Economic Dynamics and Control, 31 (2007), 2168-2195. doi: 10.1016/j.jedc.2006.06.006.  Google Scholar

[5]

P. Chen, H. L. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465. doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[6]

Y. Y. Chou, N. W. Han and M. W. Hung, Optimal portfolio-consumption choice under stochastic inflation with nominal and indexed bonds, Applied Stochastic Models in Business and Industry, 27 (2011), 691-706. doi: 10.1002/asmb.886.  Google Scholar

[7]

O. L. V. Costa and A. D. Oliveira, Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises, Automatica, 48 (2012), 304-315. doi: 10.1016/j.automatica.2011.11.009.  Google Scholar

[8]

R. Ferland and F. Watier, Mean-variance efficiency with extended CIR interest rates, Applied Stochastic Models in Business and Industry, 26 (2010), 71-84. doi: 10.1002/asmb.767.  Google Scholar

[9]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, 2ed. Springer, New York, 2006.  Google Scholar

[10]

C. P. Fu, A. Lari-lavassani and X. Li, Dynamic mean-variance portfolio selection with borrowing constraint, European Journal of Operational Research, 200 (2010), 313-319. doi: 10.1016/j.ejor.2009.01.005.  Google Scholar

[11]

J. W. Gao, Stochastic optimal control of DC pension funds, Insurance: Mathematics and Economics, 42 (2008), 1159-1164. doi: 10.1016/j.insmatheco.2008.03.004.  Google Scholar

[12]

D. Hainaut, Dynamic asset allocation under VaR constraint with stochastic interest rates, Annals Of Operations Research, 172 (2009), 97-117. doi: 10.1007/s10479-008-0509-9.  Google Scholar

[13]

N. W. Han and M. W. Hung, Optimal asset allocation for DC pension plans under inflation, Insurance: Mathematics and Economics, 51 (2012), 172-181. doi: 10.1016/j.insmatheco.2012.03.003.  Google Scholar

[14]

R. Josa-Fombellida and J. P. Rincón-Zapatero, Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates, European Journal of Operational Research, 201 (2010), 211-221. Google Scholar

[15]

R. Korn and H. Kraft, A Stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40 (2002), 1250-1269. doi: 10.1137/S0363012900377791.  Google Scholar

[16]

P. Lakner and L. M. Nygren, Portfolio optimization with downside constraints, Mathematical Finance, 16 (2006), 283-299. doi: 10.1111/j.1467-9965.2006.00272.x.  Google Scholar

[17]

M. Leippold, F. Trojani and P. Vanini, Multiperiod mean-variance efficient portfolios with endogenous liabilities, Quantitative Finance, 11 (2011), 1535-1546. doi: 10.1080/14697680902950813.  Google Scholar

[18]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406. Google Scholar

[19]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80 The Annals of Applied Probability, 16 (2006), 1751-1763. doi: 10.1214/105051606000000349.  Google Scholar

[20]

X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555. doi: 10.1137/S0363012900378504.  Google Scholar

[21]

A. E. B. Lim and X. Y. Zhou, Mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120. Google Scholar

[22]

D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1969.  Google Scholar

[23]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar

[24]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model, Review of Economic and Statistics, 51 (1969), 247-256. Google Scholar

[25]

C. Munk and C. Sørensen, Optimal consumption and investment strategies with stochastic interest rates, Journal of Banking & Finance, 28 (2004), 1987-2013. doi: 10.1016/j.jbankfin.2003.07.002.  Google Scholar

[26]

C. Munk and C. Sørensen, Dynamic asset allocation with stochastic income and interest rates, Journal of Financial Economics, 96 (2010), 433-462. doi: 10.1016/j.jfineco.2010.01.004.  Google Scholar

[27]

C. Munk and C. Sørensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?, International Review of Economics and Finance, 13 (2004), 141-166. Google Scholar

[28]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, Review of Economics and Statistics, 51 (1969), 239-246. doi: 10.2307/1926559.  Google Scholar

[29]

Z. Wang and S. Y. Liu, Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, Journal of Industrial and Management Optimization, 9 (2013), 643-657. doi: 10.3934/jimo.2013.9.643.  Google Scholar

[30]

H. L. Wu, Mean-variance portfolio selection with a stochastic cash flow in a markov-switching jump-diffusion market, Journal of Optimization Theory and Applications, 158 (2013), 918-934. doi: 10.1007/s10957-013-0292-x.  Google Scholar

[31]

H. X. Yao, Y. Z. Lai and Y. Li, Continuous-time mean-variance asset-liability management with endogenous liabilities, Insurance: Mathematics and Economics, 52 (2013), 6-17. doi: 10.1016/j.insmatheco.2012.10.001.  Google Scholar

[32]

H. X. Yao, Y. Z. Lai and Z. F. Hao, Uncertain exit time multi-period mean-variance portfolio selection with endogenous liabilities and Markov jumps, Automatica, 49 (2013), 3258-3269. doi: 10.1016/j.automatica.2013.08.023.  Google Scholar

[33]

L. Yi, Z. F. Li and D. Li, Mutli-period portfolio selection for asset-liability management with uncertain investment horizon, Journal of Industrial and Management Optimization, 4 (2008), 535-552. doi: 10.3934/jimo.2008.4.535.  Google Scholar

[34]

H. L. Yuan and Y. J. Hu, Optimal consumption and portfolio policies with the consumption habit constraints and the terminal wealth downside constraints, Insurance: Mathematics and Economics, 45 (2009), 405-409. doi: 10.1016/j.insmatheco.2009.08.012.  Google Scholar

[35]

A. Zhang and C. O. Ewald, Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369. doi: 10.1007/s00186-009-0294-5.  Google Scholar

[36]

Y. Zeng, Z. F. Li and J. J. Liu, Optimal Strategies Of Benchmark And Mean-Variance Portfolio Selection Problems For Insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496. doi: 10.3934/jimo.2010.6.483.  Google Scholar

[37]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33. doi: 10.1007/s002450010003.  Google Scholar

show all references

References:
[1]

I. Bajeux-Besnainou and R. Portait, Dynamic asset allocation in a mean-variance framework, Management Science, 44 (1998), S79-S95. Google Scholar

[2]

T. R. Bielecki, H. Q. Jin, S. R. Pliska and X. Y. Zhou, Continuous-time mean-variance portfolio selection with bankruptcy prohibition, Mathematical Finance, 15 (2005), 213-244. doi: 10.1111/j.0960-1627.2005.00218.x.  Google Scholar

[3]

M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, Journal of Finance, 57 (2002), 1201-1238. doi: 10.1111/1540-6261.00459.  Google Scholar

[4]

T. Chellathurai and T. Draviam, Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory, Journal of Economic Dynamics and Control, 31 (2007), 2168-2195. doi: 10.1016/j.jedc.2006.06.006.  Google Scholar

[5]

P. Chen, H. L. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465. doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[6]

Y. Y. Chou, N. W. Han and M. W. Hung, Optimal portfolio-consumption choice under stochastic inflation with nominal and indexed bonds, Applied Stochastic Models in Business and Industry, 27 (2011), 691-706. doi: 10.1002/asmb.886.  Google Scholar

[7]

O. L. V. Costa and A. D. Oliveira, Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises, Automatica, 48 (2012), 304-315. doi: 10.1016/j.automatica.2011.11.009.  Google Scholar

[8]

R. Ferland and F. Watier, Mean-variance efficiency with extended CIR interest rates, Applied Stochastic Models in Business and Industry, 26 (2010), 71-84. doi: 10.1002/asmb.767.  Google Scholar

[9]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, 2ed. Springer, New York, 2006.  Google Scholar

[10]

C. P. Fu, A. Lari-lavassani and X. Li, Dynamic mean-variance portfolio selection with borrowing constraint, European Journal of Operational Research, 200 (2010), 313-319. doi: 10.1016/j.ejor.2009.01.005.  Google Scholar

[11]

J. W. Gao, Stochastic optimal control of DC pension funds, Insurance: Mathematics and Economics, 42 (2008), 1159-1164. doi: 10.1016/j.insmatheco.2008.03.004.  Google Scholar

[12]

D. Hainaut, Dynamic asset allocation under VaR constraint with stochastic interest rates, Annals Of Operations Research, 172 (2009), 97-117. doi: 10.1007/s10479-008-0509-9.  Google Scholar

[13]

N. W. Han and M. W. Hung, Optimal asset allocation for DC pension plans under inflation, Insurance: Mathematics and Economics, 51 (2012), 172-181. doi: 10.1016/j.insmatheco.2012.03.003.  Google Scholar

[14]

R. Josa-Fombellida and J. P. Rincón-Zapatero, Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates, European Journal of Operational Research, 201 (2010), 211-221. Google Scholar

[15]

R. Korn and H. Kraft, A Stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40 (2002), 1250-1269. doi: 10.1137/S0363012900377791.  Google Scholar

[16]

P. Lakner and L. M. Nygren, Portfolio optimization with downside constraints, Mathematical Finance, 16 (2006), 283-299. doi: 10.1111/j.1467-9965.2006.00272.x.  Google Scholar

[17]

M. Leippold, F. Trojani and P. Vanini, Multiperiod mean-variance efficient portfolios with endogenous liabilities, Quantitative Finance, 11 (2011), 1535-1546. doi: 10.1080/14697680902950813.  Google Scholar

[18]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406. Google Scholar

[19]

X. Li and X. Y. Zhou, Continuous-time mean-variance efficiency: The 80 The Annals of Applied Probability, 16 (2006), 1751-1763. doi: 10.1214/105051606000000349.  Google Scholar

[20]

X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555. doi: 10.1137/S0363012900378504.  Google Scholar

[21]

A. E. B. Lim and X. Y. Zhou, Mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120. Google Scholar

[22]

D. G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1969.  Google Scholar

[23]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar

[24]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model, Review of Economic and Statistics, 51 (1969), 247-256. Google Scholar

[25]

C. Munk and C. Sørensen, Optimal consumption and investment strategies with stochastic interest rates, Journal of Banking & Finance, 28 (2004), 1987-2013. doi: 10.1016/j.jbankfin.2003.07.002.  Google Scholar

[26]

C. Munk and C. Sørensen, Dynamic asset allocation with stochastic income and interest rates, Journal of Financial Economics, 96 (2010), 433-462. doi: 10.1016/j.jfineco.2010.01.004.  Google Scholar

[27]

C. Munk and C. Sørensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?, International Review of Economics and Finance, 13 (2004), 141-166. Google Scholar

[28]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, Review of Economics and Statistics, 51 (1969), 239-246. doi: 10.2307/1926559.  Google Scholar

[29]

Z. Wang and S. Y. Liu, Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, Journal of Industrial and Management Optimization, 9 (2013), 643-657. doi: 10.3934/jimo.2013.9.643.  Google Scholar

[30]

H. L. Wu, Mean-variance portfolio selection with a stochastic cash flow in a markov-switching jump-diffusion market, Journal of Optimization Theory and Applications, 158 (2013), 918-934. doi: 10.1007/s10957-013-0292-x.  Google Scholar

[31]

H. X. Yao, Y. Z. Lai and Y. Li, Continuous-time mean-variance asset-liability management with endogenous liabilities, Insurance: Mathematics and Economics, 52 (2013), 6-17. doi: 10.1016/j.insmatheco.2012.10.001.  Google Scholar

[32]

H. X. Yao, Y. Z. Lai and Z. F. Hao, Uncertain exit time multi-period mean-variance portfolio selection with endogenous liabilities and Markov jumps, Automatica, 49 (2013), 3258-3269. doi: 10.1016/j.automatica.2013.08.023.  Google Scholar

[33]

L. Yi, Z. F. Li and D. Li, Mutli-period portfolio selection for asset-liability management with uncertain investment horizon, Journal of Industrial and Management Optimization, 4 (2008), 535-552. doi: 10.3934/jimo.2008.4.535.  Google Scholar

[34]

H. L. Yuan and Y. J. Hu, Optimal consumption and portfolio policies with the consumption habit constraints and the terminal wealth downside constraints, Insurance: Mathematics and Economics, 45 (2009), 405-409. doi: 10.1016/j.insmatheco.2009.08.012.  Google Scholar

[35]

A. Zhang and C. O. Ewald, Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369. doi: 10.1007/s00186-009-0294-5.  Google Scholar

[36]

Y. Zeng, Z. F. Li and J. J. Liu, Optimal Strategies Of Benchmark And Mean-Variance Portfolio Selection Problems For Insurers, Journal of Industrial and Management Optimization, 6 (2010), 483-496. doi: 10.3934/jimo.2010.6.483.  Google Scholar

[37]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33. doi: 10.1007/s002450010003.  Google Scholar

[1]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180

[2]

Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026

[3]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[4]

Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3767-3793. doi: 10.3934/cpaa.2021130

[5]

Xuhui Wang, Lei Hu. A new method to solve the Hamilton-Jacobi-Bellman equation for a stochastic portfolio optimization model with boundary memory. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021137

[6]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[7]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[8]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[9]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046

[10]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[11]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[12]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[13]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[14]

Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045

[15]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[16]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[17]

Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial & Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141

[18]

Hao Chang, Jiaao Li, Hui Zhao. Robust optimal strategies of DC pension plans with stochastic volatility and stochastic income under mean-variance criteria. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021025

[19]

Qian Zhao, Yang Shen, Jiaqin Wei. Mean-variance investment and contribution decisions for defined benefit pension plans in a stochastic framework. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1147-1171. doi: 10.3934/jimo.2020015

[20]

Zhiping Chen, Jia Liu, Gang Li. Time consistent policy of multi-period mean-variance problem in stochastic markets. Journal of Industrial & Management Optimization, 2016, 12 (1) : 229-249. doi: 10.3934/jimo.2016.12.229

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (241)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]