January  2016, 12(1): 211-228. doi: 10.3934/jimo.2016.12.211

A new approach for allocating fixed costs among decision making units

1. 

Department of Computing Science, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China, China, China

Received  March 2014 Revised  January 2015 Published  April 2015

How to equitably distribute a common fixed cost among decision making units (DMUs) of an organization is a typical problem in organization management. Based on the data envelopment analysis technique, this paper proposes a new proportional sharing model to determine a unique fixed cost allocation under two assumptions: efficiency invariance and zero slack. It is noteworthy that the fixed cost allocation determined by our proportional sharing model is a feasible solution to the model proposed by Cook and Zhu [Cook and Zhu, Allocation of shared costs among decision making units: A DEA approach, Computers & Operations Research, 32 (2005) 2171-2178]. To ensure the uniqueness of the fixed cost allocation, three algorithms are proposed under the new model. Different from current fixed cost allocation methods under the efficiency invariance assumption, our approach can generate a fixed cost allocation that is unique, partially dependent of DMUs' inputs and units-invariant, and thus is more effective. Numerical examples are used to illustrate the validity and superiorities of our approach.
Citation: Ruiyue Lin, Zhiping Chen, Zongxin Li. A new approach for allocating fixed costs among decision making units. Journal of Industrial & Management Optimization, 2016, 12 (1) : 211-228. doi: 10.3934/jimo.2016.12.211
References:
[1]

A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach,, Applied Mathematics and Computation, 171 (2005), 136.  doi: 10.1016/j.amc.2005.01.064.  Google Scholar

[2]

J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis,, European Journal of Operational Research, 147 (2003), 198.  doi: 10.1016/S0377-2217(02)00244-8.  Google Scholar

[3]

A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities,, Journal of Industrial and management optimization, 5 (2009), 253.  doi: 10.3934/jimo.2009.5.253.  Google Scholar

[4]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[5]

W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach,, European Journal of Operational Research, 119 (1999), 652.  doi: 10.1016/S0377-2217(98)00337-3.  Google Scholar

[6]

W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach,, Computers & Operations Research, 32 (2005), 2171.  doi: 10.1016/j.cor.2004.02.007.  Google Scholar

[7]

W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis,, 2nd edition, (2007).   Google Scholar

[8]

F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach,, Computers & Industrial Engineering, 64 (2013), 631.   Google Scholar

[9]

G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA,, Applied Mathematics and Computation, 153 (2004), 267.  doi: 10.1016/S0096-3003(03)00631-3.  Google Scholar

[10]

M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept,, Annals of Operational Research, 214 (2014), 187.  doi: 10.1007/s10479-012-1117-2.  Google Scholar

[11]

Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach,, European Journal of Operational Research, 197 (2009), 389.  doi: 10.1016/j.ejor.2008.06.017.  Google Scholar

[12]

Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree,, Omega, 41 (2013), 55.  doi: 10.1016/j.omega.2011.02.008.  Google Scholar

[13]

R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis,, Applied Mathematics and Computation, 217 (2011), 6349.  doi: 10.1016/j.amc.2011.01.008.  Google Scholar

[14]

R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and Computation, 218 (2011), 3680.  doi: 10.1016/j.amc.2011.09.011.  Google Scholar

[15]

M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis,, Journal of Industrial and management optimization, 7 (2011), 531.   Google Scholar

[16]

A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA,, European Journal of Operational Research, 209 (2011), 113.  doi: 10.1016/j.ejor.2010.08.008.  Google Scholar

[17]

A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA,, Journal of the Operational Research Society, 63 (2012), 406.   Google Scholar

[18]

H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods,, Mathematics of Operations Research, 27 (2002), 1.  doi: 10.1287/moor.27.1.1.336.  Google Scholar

[19]

X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost,, Applied Mathematics and Computation, 219 (2013), 6580.  doi: 10.1016/j.amc.2012.12.085.  Google Scholar

[20]

R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions,, European Journal of Operational Research, 220 (2012), 729.  doi: 10.1016/j.ejor.2012.01.064.  Google Scholar

[21]

T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties,, European Journal of Operational Research, 196 (2009), 764.  doi: 10.1016/j.ejor.2008.01.045.  Google Scholar

[22]

Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing,, Journal of Mathematical Economics, 37 (2002), 215.  doi: 10.1016/S0304-4068(02)00016-2.  Google Scholar

show all references

References:
[1]

A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach,, Applied Mathematics and Computation, 171 (2005), 136.  doi: 10.1016/j.amc.2005.01.064.  Google Scholar

[2]

J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis,, European Journal of Operational Research, 147 (2003), 198.  doi: 10.1016/S0377-2217(02)00244-8.  Google Scholar

[3]

A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities,, Journal of Industrial and management optimization, 5 (2009), 253.  doi: 10.3934/jimo.2009.5.253.  Google Scholar

[4]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[5]

W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach,, European Journal of Operational Research, 119 (1999), 652.  doi: 10.1016/S0377-2217(98)00337-3.  Google Scholar

[6]

W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach,, Computers & Operations Research, 32 (2005), 2171.  doi: 10.1016/j.cor.2004.02.007.  Google Scholar

[7]

W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis,, 2nd edition, (2007).   Google Scholar

[8]

F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach,, Computers & Industrial Engineering, 64 (2013), 631.   Google Scholar

[9]

G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA,, Applied Mathematics and Computation, 153 (2004), 267.  doi: 10.1016/S0096-3003(03)00631-3.  Google Scholar

[10]

M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept,, Annals of Operational Research, 214 (2014), 187.  doi: 10.1007/s10479-012-1117-2.  Google Scholar

[11]

Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach,, European Journal of Operational Research, 197 (2009), 389.  doi: 10.1016/j.ejor.2008.06.017.  Google Scholar

[12]

Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree,, Omega, 41 (2013), 55.  doi: 10.1016/j.omega.2011.02.008.  Google Scholar

[13]

R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis,, Applied Mathematics and Computation, 217 (2011), 6349.  doi: 10.1016/j.amc.2011.01.008.  Google Scholar

[14]

R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and Computation, 218 (2011), 3680.  doi: 10.1016/j.amc.2011.09.011.  Google Scholar

[15]

M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis,, Journal of Industrial and management optimization, 7 (2011), 531.   Google Scholar

[16]

A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA,, European Journal of Operational Research, 209 (2011), 113.  doi: 10.1016/j.ejor.2010.08.008.  Google Scholar

[17]

A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA,, Journal of the Operational Research Society, 63 (2012), 406.   Google Scholar

[18]

H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods,, Mathematics of Operations Research, 27 (2002), 1.  doi: 10.1287/moor.27.1.1.336.  Google Scholar

[19]

X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost,, Applied Mathematics and Computation, 219 (2013), 6580.  doi: 10.1016/j.amc.2012.12.085.  Google Scholar

[20]

R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions,, European Journal of Operational Research, 220 (2012), 729.  doi: 10.1016/j.ejor.2012.01.064.  Google Scholar

[21]

T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties,, European Journal of Operational Research, 196 (2009), 764.  doi: 10.1016/j.ejor.2008.01.045.  Google Scholar

[22]

Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing,, Journal of Mathematical Economics, 37 (2002), 215.  doi: 10.1016/S0304-4068(02)00016-2.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[3]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[4]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[5]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[8]

Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021  doi: 10.3934/fods.2021002

[9]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[10]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[11]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[14]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[17]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[18]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]