January  2016, 12(1): 211-228. doi: 10.3934/jimo.2016.12.211

A new approach for allocating fixed costs among decision making units

1. 

Department of Computing Science, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China, China, China

Received  March 2014 Revised  January 2015 Published  April 2015

How to equitably distribute a common fixed cost among decision making units (DMUs) of an organization is a typical problem in organization management. Based on the data envelopment analysis technique, this paper proposes a new proportional sharing model to determine a unique fixed cost allocation under two assumptions: efficiency invariance and zero slack. It is noteworthy that the fixed cost allocation determined by our proportional sharing model is a feasible solution to the model proposed by Cook and Zhu [Cook and Zhu, Allocation of shared costs among decision making units: A DEA approach, Computers & Operations Research, 32 (2005) 2171-2178]. To ensure the uniqueness of the fixed cost allocation, three algorithms are proposed under the new model. Different from current fixed cost allocation methods under the efficiency invariance assumption, our approach can generate a fixed cost allocation that is unique, partially dependent of DMUs' inputs and units-invariant, and thus is more effective. Numerical examples are used to illustrate the validity and superiorities of our approach.
Citation: Ruiyue Lin, Zhiping Chen, Zongxin Li. A new approach for allocating fixed costs among decision making units. Journal of Industrial & Management Optimization, 2016, 12 (1) : 211-228. doi: 10.3934/jimo.2016.12.211
References:
[1]

A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach,, Applied Mathematics and Computation, 171 (2005), 136.  doi: 10.1016/j.amc.2005.01.064.  Google Scholar

[2]

J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis,, European Journal of Operational Research, 147 (2003), 198.  doi: 10.1016/S0377-2217(02)00244-8.  Google Scholar

[3]

A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities,, Journal of Industrial and management optimization, 5 (2009), 253.  doi: 10.3934/jimo.2009.5.253.  Google Scholar

[4]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[5]

W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach,, European Journal of Operational Research, 119 (1999), 652.  doi: 10.1016/S0377-2217(98)00337-3.  Google Scholar

[6]

W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach,, Computers & Operations Research, 32 (2005), 2171.  doi: 10.1016/j.cor.2004.02.007.  Google Scholar

[7]

W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis,, 2nd edition, (2007).   Google Scholar

[8]

F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach,, Computers & Industrial Engineering, 64 (2013), 631.   Google Scholar

[9]

G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA,, Applied Mathematics and Computation, 153 (2004), 267.  doi: 10.1016/S0096-3003(03)00631-3.  Google Scholar

[10]

M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept,, Annals of Operational Research, 214 (2014), 187.  doi: 10.1007/s10479-012-1117-2.  Google Scholar

[11]

Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach,, European Journal of Operational Research, 197 (2009), 389.  doi: 10.1016/j.ejor.2008.06.017.  Google Scholar

[12]

Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree,, Omega, 41 (2013), 55.  doi: 10.1016/j.omega.2011.02.008.  Google Scholar

[13]

R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis,, Applied Mathematics and Computation, 217 (2011), 6349.  doi: 10.1016/j.amc.2011.01.008.  Google Scholar

[14]

R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and Computation, 218 (2011), 3680.  doi: 10.1016/j.amc.2011.09.011.  Google Scholar

[15]

M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis,, Journal of Industrial and management optimization, 7 (2011), 531.   Google Scholar

[16]

A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA,, European Journal of Operational Research, 209 (2011), 113.  doi: 10.1016/j.ejor.2010.08.008.  Google Scholar

[17]

A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA,, Journal of the Operational Research Society, 63 (2012), 406.   Google Scholar

[18]

H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods,, Mathematics of Operations Research, 27 (2002), 1.  doi: 10.1287/moor.27.1.1.336.  Google Scholar

[19]

X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost,, Applied Mathematics and Computation, 219 (2013), 6580.  doi: 10.1016/j.amc.2012.12.085.  Google Scholar

[20]

R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions,, European Journal of Operational Research, 220 (2012), 729.  doi: 10.1016/j.ejor.2012.01.064.  Google Scholar

[21]

T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties,, European Journal of Operational Research, 196 (2009), 764.  doi: 10.1016/j.ejor.2008.01.045.  Google Scholar

[22]

Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing,, Journal of Mathematical Economics, 37 (2002), 215.  doi: 10.1016/S0304-4068(02)00016-2.  Google Scholar

show all references

References:
[1]

A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: A DEA-based approach,, Applied Mathematics and Computation, 171 (2005), 136.  doi: 10.1016/j.amc.2005.01.064.  Google Scholar

[2]

J. E. Beasley, Allocating fixed costs and resources via data envelopment analysis,, European Journal of Operational Research, 147 (2003), 198.  doi: 10.1016/S0377-2217(02)00244-8.  Google Scholar

[3]

A. Cadena, A. Marcucci, J. F. Pérez, H. Durán, H. Mutis, C. Taútiva and F. Palacios, Efficiency analysis in electricity transmission utilities,, Journal of Industrial and management optimization, 5 (2009), 253.  doi: 10.3934/jimo.2009.5.253.  Google Scholar

[4]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.  doi: 10.1016/0377-2217(78)90138-8.  Google Scholar

[5]

W. D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: A DEA approach,, European Journal of Operational Research, 119 (1999), 652.  doi: 10.1016/S0377-2217(98)00337-3.  Google Scholar

[6]

W. D. Cook and J. Zhu, Allocation of shared costs among decision making units: A DEA approach,, Computers & Operations Research, 32 (2005), 2171.  doi: 10.1016/j.cor.2004.02.007.  Google Scholar

[7]

W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis,, 2nd edition, (2007).   Google Scholar

[8]

F. Hosseinzadeh Lotfi, A. Hatami-Marbini, P. J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach,, Computers & Industrial Engineering, 64 (2013), 631.   Google Scholar

[9]

G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA,, Applied Mathematics and Computation, 153 (2004), 267.  doi: 10.1016/S0096-3003(03)00631-3.  Google Scholar

[10]

M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept,, Annals of Operational Research, 214 (2014), 187.  doi: 10.1007/s10479-012-1117-2.  Google Scholar

[11]

Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach,, European Journal of Operational Research, 197 (2009), 389.  doi: 10.1016/j.ejor.2008.06.017.  Google Scholar

[12]

Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree,, Omega, 41 (2013), 55.  doi: 10.1016/j.omega.2011.02.008.  Google Scholar

[13]

R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis,, Applied Mathematics and Computation, 217 (2011), 6349.  doi: 10.1016/j.amc.2011.01.008.  Google Scholar

[14]

R. Lin, Allocating fixed costs and common revenue via data envelopment analysis,, Applied Mathematics and Computation, 218 (2011), 3680.  doi: 10.1016/j.amc.2011.09.011.  Google Scholar

[15]

M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for custer value analysis,, Journal of Industrial and management optimization, 7 (2011), 531.   Google Scholar

[16]

A. Z. Milioni, J. V. G. Avellar, E. G. Gomes and J. C. B. Soares de Mello, An ellipsoidal frontier model: Allocating input via parametric DEA,, European Journal of Operational Research, 209 (2011), 113.  doi: 10.1016/j.ejor.2010.08.008.  Google Scholar

[17]

A. Z. Milioni, E. C. C. Guedes, J. V. G. Avellar and R. C. Silva, Adjusted spherical frontier model: Allocating input via parametric DEA,, Journal of the Operational Research Society, 63 (2012), 406.   Google Scholar

[18]

H. Moulin and R. Stong, Fair queuing and other probabilistic allocation methods,, Mathematics of Operations Research, 27 (2002), 1.  doi: 10.1287/moor.27.1.1.336.  Google Scholar

[19]

X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost,, Applied Mathematics and Computation, 219 (2013), 6580.  doi: 10.1016/j.amc.2012.12.085.  Google Scholar

[20]

R. C. Silva and A. Z. Milioni, The adjusted spherical drontier model with weight restrictions,, European Journal of Operational Research, 220 (2012), 729.  doi: 10.1016/j.ejor.2012.01.064.  Google Scholar

[21]

T. Sueyoshi and K. Sekitani, An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties,, European Journal of Operational Research, 196 (2009), 764.  doi: 10.1016/j.ejor.2008.01.045.  Google Scholar

[22]

Y. T. Wang and D. X. Zhu, Ordinal proportional cost sharing,, Journal of Mathematical Economics, 37 (2002), 215.  doi: 10.1016/S0304-4068(02)00016-2.  Google Scholar

[1]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial & Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

[2]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[3]

Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial & Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531

[4]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial & Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043

[5]

Runqin Hao, Guanwen Zhang, Dong Li, Jie Zhang. Data modeling analysis on removal efficiency of hexavalent chromium. Mathematical Foundations of Computing, 2019, 2 (3) : 203-213. doi: 10.3934/mfc.2019014

[6]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

[7]

Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 651-664. doi: 10.3934/dcds.2000.6.651

[8]

Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2145-2168. doi: 10.3934/dcdsb.2016041

[9]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[10]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[11]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[12]

Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019

[13]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[14]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[15]

Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107

[16]

Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009

[17]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[18]

Abbas Moameni. Invariance properties of the Monge-Kantorovich mass transport problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2653-2671. doi: 10.3934/dcds.2016.36.2653

[19]

Fritz Colonius. Invariance entropy, quasi-stationary measures and control sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2093-2123. doi: 10.3934/dcds.2018086

[20]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]