-
Previous Article
Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
- JIMO Home
- This Issue
-
Next Article
A novel discriminant minimum class locality preserving canonical correlation analysis and its applications
Quadratic optimization over a polyhedral cone
1. | School of Business Administration, Southwestern University of Finance and Economics, Chengdu, 611130 |
2. | Department of Management Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058 |
3. | School of Management, University of Chinese Academy of Sciences, Beijing, 100190, China |
References:
[1] |
L. Angulo-Meza and M. Lins, Review of methods for increasing discrimination in data envelopment analysis,, Annals of Operations Research, 116 (2002), 225.
doi: 10.1023/A:1021340616758. |
[2] |
K. Anstreicher, Semidefinite programming versus the Reformulation-Linearization Technique for nonconvex quadratically constrained quadratic programming,, Journal of Global Optimization, 43 (2009), 471.
doi: 10.1007/s10898-008-9372-0. |
[3] |
A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization Analysis, Algorithms and Engineering Applications,, SIAM, (2001).
doi: 10.1137/1.9780898718829. |
[4] |
S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511804441. |
[5] |
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Mathematical Programming, 120 (2009), 479.
doi: 10.1007/s10107-008-0223-z. |
[6] |
Z. Deng, S.-C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme,, European Journal of Operational Research, 229 (2013), 21.
doi: 10.1016/j.ejor.2013.02.031. |
[7] |
M. Grant and S. Boyd, CVX: matlab Software for Disciplined Programming,, version 1.2, (2010). Google Scholar |
[8] |
X. Guo, Z. Deng, S.-C. Fang and W. Xing, Quadratic optimization over one first-order cone,, Journal of Industrial and Management Optimization, 10 (2014), 945.
doi: 10.3934/jimo.2014.10.945. |
[9] |
P. Hansen, B. Jaumard, M. Ruiz and J. Xiong, Global minimization of indefinite quadratic functions subject to box constraints,, Naval Research Logistics, 40 (1993), 373.
doi: 10.1002/1520-6750(199304)40:3<373::AID-NAV3220400307>3.0.CO;2-A. |
[10] |
J. Hiriat-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis,, Springer-Berlag, (2001).
doi: 10.1007/978-3-642-56468-0. |
[11] |
H. Jiang, M. Fukushima, L. Qi and D. Sun, A trust region method for solving generalized complementarity problem,, SIAM Journal on Optimization, 8 (1998), 140.
doi: 10.1137/S1052623495296541. |
[12] |
Q. Jin, Y. Tian, Z. Deng, S.-C. Fang and W. Xing, Exact computable representation of some second-order cone constrained quadratic programming problems,, Journal of Operations Research Society of China, 1 (2013), 107.
doi: 10.1007/s40305-013-0009-8. |
[13] |
C. Lu, S.-C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems,, SIAM Journal on Optimization, 21 (2010), 1475.
doi: 10.1137/100793955. |
[14] |
H. Kunze and D. Siegel, A graph theoretic approach to strong monotonicity with respect to polyhedral cones,, Positivity, 6 (2002), 95.
doi: 10.1023/A:1015290601993. |
[15] |
F. Ma, G. Sheng and Y. Yin, A superlinearly convergent method for the generalized complementarity problem over a polyhedral cone,, Journal of Applied Mathematics, (2013).
doi: 10.1155/2013/671402. |
[16] |
R. Rockafellar, Convex Analysis,, Princeton University Press, (1997).
|
[17] |
A. Sinha, P. Korhonen, J. Wallenius and K. Deb, An interactive evolutionary multi-objective optimization method based on polyhedral cones,, Learning and Intelligent Optimization, 6073 (2010), 318.
doi: 10.1007/978-3-642-13800-3_33. |
[18] |
J. Stoer and C. Witzgall, Convexity and Optimization In Finite Dimensions,, Springer-Berlag Berlin, (1970).
|
[19] |
J. Sturm, SeDuMi 1.02, a matlab tool box for optimization over symmetric cones,, Optimization Methods and Software, 11 & 12 (1999), 625.
doi: 10.1080/10556789908805766. |
[20] |
J. Sturm and S. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246.
doi: 10.1287/moor.28.2.246.14485. |
[21] |
H. Sun and Y. Wang, Further discussion on the error bound for generalized linear complementarity problem over a polyhedral cone,, Journal of Optimization and Theory Application, 159 (2013), 93.
doi: 10.1007/s10957-013-0290-z. |
[22] |
Y. Tian, S.-C. Fang, Z. Deng and W. Xing, Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positiv programming,, Journal of Industrial and Management Optimization, 9 (2013), 703.
doi: 10.3934/jimo.2013.9.703. |
[23] |
Y. Wang, F. Ma and J. Zhang, A nonsmooth L-M method for solving the generalized nonlinear complementarity problem over a polyhedral cone,, Applied Mathematics and Optimization, 52 (2005), 73.
doi: 10.1007/s00245-005-0823-4. |
[24] |
Y. Ye and S. Zhang, New results on quadratic minimization,, SIAM Journal on Optimization, 14 (2003), 245.
doi: 10.1137/S105262340139001X. |
show all references
References:
[1] |
L. Angulo-Meza and M. Lins, Review of methods for increasing discrimination in data envelopment analysis,, Annals of Operations Research, 116 (2002), 225.
doi: 10.1023/A:1021340616758. |
[2] |
K. Anstreicher, Semidefinite programming versus the Reformulation-Linearization Technique for nonconvex quadratically constrained quadratic programming,, Journal of Global Optimization, 43 (2009), 471.
doi: 10.1007/s10898-008-9372-0. |
[3] |
A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization Analysis, Algorithms and Engineering Applications,, SIAM, (2001).
doi: 10.1137/1.9780898718829. |
[4] |
S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511804441. |
[5] |
S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs,, Mathematical Programming, 120 (2009), 479.
doi: 10.1007/s10107-008-0223-z. |
[6] |
Z. Deng, S.-C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme,, European Journal of Operational Research, 229 (2013), 21.
doi: 10.1016/j.ejor.2013.02.031. |
[7] |
M. Grant and S. Boyd, CVX: matlab Software for Disciplined Programming,, version 1.2, (2010). Google Scholar |
[8] |
X. Guo, Z. Deng, S.-C. Fang and W. Xing, Quadratic optimization over one first-order cone,, Journal of Industrial and Management Optimization, 10 (2014), 945.
doi: 10.3934/jimo.2014.10.945. |
[9] |
P. Hansen, B. Jaumard, M. Ruiz and J. Xiong, Global minimization of indefinite quadratic functions subject to box constraints,, Naval Research Logistics, 40 (1993), 373.
doi: 10.1002/1520-6750(199304)40:3<373::AID-NAV3220400307>3.0.CO;2-A. |
[10] |
J. Hiriat-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis,, Springer-Berlag, (2001).
doi: 10.1007/978-3-642-56468-0. |
[11] |
H. Jiang, M. Fukushima, L. Qi and D. Sun, A trust region method for solving generalized complementarity problem,, SIAM Journal on Optimization, 8 (1998), 140.
doi: 10.1137/S1052623495296541. |
[12] |
Q. Jin, Y. Tian, Z. Deng, S.-C. Fang and W. Xing, Exact computable representation of some second-order cone constrained quadratic programming problems,, Journal of Operations Research Society of China, 1 (2013), 107.
doi: 10.1007/s40305-013-0009-8. |
[13] |
C. Lu, S.-C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems,, SIAM Journal on Optimization, 21 (2010), 1475.
doi: 10.1137/100793955. |
[14] |
H. Kunze and D. Siegel, A graph theoretic approach to strong monotonicity with respect to polyhedral cones,, Positivity, 6 (2002), 95.
doi: 10.1023/A:1015290601993. |
[15] |
F. Ma, G. Sheng and Y. Yin, A superlinearly convergent method for the generalized complementarity problem over a polyhedral cone,, Journal of Applied Mathematics, (2013).
doi: 10.1155/2013/671402. |
[16] |
R. Rockafellar, Convex Analysis,, Princeton University Press, (1997).
|
[17] |
A. Sinha, P. Korhonen, J. Wallenius and K. Deb, An interactive evolutionary multi-objective optimization method based on polyhedral cones,, Learning and Intelligent Optimization, 6073 (2010), 318.
doi: 10.1007/978-3-642-13800-3_33. |
[18] |
J. Stoer and C. Witzgall, Convexity and Optimization In Finite Dimensions,, Springer-Berlag Berlin, (1970).
|
[19] |
J. Sturm, SeDuMi 1.02, a matlab tool box for optimization over symmetric cones,, Optimization Methods and Software, 11 & 12 (1999), 625.
doi: 10.1080/10556789908805766. |
[20] |
J. Sturm and S. Zhang, On cones of nonnegative quadratic functions,, Mathematics of Operations Research, 28 (2003), 246.
doi: 10.1287/moor.28.2.246.14485. |
[21] |
H. Sun and Y. Wang, Further discussion on the error bound for generalized linear complementarity problem over a polyhedral cone,, Journal of Optimization and Theory Application, 159 (2013), 93.
doi: 10.1007/s10957-013-0290-z. |
[22] |
Y. Tian, S.-C. Fang, Z. Deng and W. Xing, Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positiv programming,, Journal of Industrial and Management Optimization, 9 (2013), 703.
doi: 10.3934/jimo.2013.9.703. |
[23] |
Y. Wang, F. Ma and J. Zhang, A nonsmooth L-M method for solving the generalized nonlinear complementarity problem over a polyhedral cone,, Applied Mathematics and Optimization, 52 (2005), 73.
doi: 10.1007/s00245-005-0823-4. |
[24] |
Y. Ye and S. Zhang, New results on quadratic minimization,, SIAM Journal on Optimization, 14 (2003), 245.
doi: 10.1137/S105262340139001X. |
[1] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[2] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[3] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[4] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[5] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[6] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[7] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[8] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[9] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[10] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[11] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[12] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[13] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[14] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[15] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[16] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[17] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[18] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[19] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[20] |
Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]