-
Previous Article
Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback
- JIMO Home
- This Issue
-
Next Article
Quadratic optimization over a polyhedral cone
Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
1. | Department of Mathematics, Harbin University of Science and Technology, Harbin, 150080, China |
2. | Department of Mathematics, Harbin Institute of Technology, Harbin 150001 |
References:
[1] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, MA: Birkauser, Boston, 1990. |
[3] |
E. K. P. Chong, S. Hui and S. H. Zak, An analysis of a class of neural networks for solving linear programming problems, Automatic Control, IEEE Transactions on, 44 (1999), 1995-2006.
doi: 10.1109/9.802909. |
[4] |
J. Chen and J. Ye, Training SVM with indefinite kernels, In Proceedings of the 25th International Conference on Machine Learning, (2008), 136-143.
doi: 10.1145/1390156.1390174. |
[5] |
F. H. Clarke, Optimization and Non-smooth Analysis, Wiley, New York, 1969. |
[6] |
L. Fengqiu and X. Xiaoping, Design of natural classification kernels using prior knowledge, Fuzzy Systems, IEEE Transactions on, 20 (2012), 135-152. |
[7] |
A. F. Filippove, Differential Equations with Discontinuous Right-Hand Side, Mathematics and Its Applications (Soviet Series), Boston, MA: Kluwer, 1988. |
[8] |
M. Forti, P. Nistri and M. Quincampoix, Convergence of neural networks for programming problems via a nonsmooth Łojasiewicz inequality, Neural Networks, IEEE Transactions on, 17 (2006), 1471-1486. |
[9] |
M. Forti and A. Tesi, Absolute stability of analytic neural networks: An approach based on finite trajectory length, Circuits System I, IEEE Transation on, 51 (2004), 2460-2469.
doi: 10.1109/TCSI.2004.838143. |
[10] |
B. Haasdonk, Feature space interpretation of svms with indefinite kernels, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27 (2005), 482-492.
doi: 10.1109/TPAMI.2005.78. |
[11] |
M. Hein and O. Bousquet, Hilbertian metrics and positive definite kernels on probability measures, In Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, (eds. Z. Ghahramani and R. Cowell), Society for Artificial Intelligence and Statistics, United States, (2005), 136-143. |
[12] |
J. J. Hopfield and D. W. Tank, "Neural" computation of decisions in optimization problems, Biological cybernetics, 52 (1985), 141-152. |
[13] |
R. Luss and A. d'Aspremon, Support vector machine classification with indefinite kernels, Mathematical Programming Computation, 1 (2009), 97-118.
doi: 10.1007/s12532-009-0005-5. |
[14] |
I. Mierswa, Making Indefinite Kernel Learning Practical, Technical report, Artificial Intelligence Unit Department of Computer Science University of Dortmund, 2006. |
[15] |
J. C. Platt, Fast training of support vector machines using sequential minimal optimization, In Advances in Kernel Methods, (eds. Schölkopf, C. Burges and A. Smola), MIT, (1999), 185-208. |
[16] |
T. Rockafellar and R. Wets, Variational Analysis, Springer-Verlag, Germany, 1998.
doi: 10.1007/978-3-642-02431-3. |
[17] |
S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter, Pegasos: Primal estimated sub-gradient solver for SVM, Math. Program., 127 (2011), 3-30.
doi: 10.1007/s10107-010-0420-4. |
[18] |
H. Saigo, J. P. Vert, N. Ueda and T. Akutsu, Protein homology detection using string alignment kernels, Bioinformatics, 20 (2004), 1682-1689.
doi: 10.1093/bioinformatics/bth141. |
[19] |
B. Schölkopf and A. J. Smola, Learning with Kernels, MIT, Cambridge, MA, 2002. |
[20] |
B. Schölkopf, P. Simard, A. J. Smola and V. N. Vapnik, Prior Knowledge in Support Vector Kernels, MIT, Cambridge, MA, 1998. |
[21] |
V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998. |
[22] |
B. Wei and X. Xiaoping, Subgradient-based neural networks for nonsmooth nonconvex optimization problems, Circuits and Systems I: Regular Papers, IEEE Transactions on, 55 (2008), 2378-2391.
doi: 10.1109/TCSI.2008.920131. |
[23] |
Y. Xia and J. Wang, A one-layer recurrent neural network for support vector machine learning, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34 (2004), 1621-1629.
doi: 10.1109/TSMCB.2003.822955. |
[24] |
S. Ziye and J. Qingwei, Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems, Journal of Industrial and Management Optimization, 10 (2014), 871-882.
doi: 10.3934/jimo.2014.10.871. |
show all references
References:
[1] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4. |
[2] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, MA: Birkauser, Boston, 1990. |
[3] |
E. K. P. Chong, S. Hui and S. H. Zak, An analysis of a class of neural networks for solving linear programming problems, Automatic Control, IEEE Transactions on, 44 (1999), 1995-2006.
doi: 10.1109/9.802909. |
[4] |
J. Chen and J. Ye, Training SVM with indefinite kernels, In Proceedings of the 25th International Conference on Machine Learning, (2008), 136-143.
doi: 10.1145/1390156.1390174. |
[5] |
F. H. Clarke, Optimization and Non-smooth Analysis, Wiley, New York, 1969. |
[6] |
L. Fengqiu and X. Xiaoping, Design of natural classification kernels using prior knowledge, Fuzzy Systems, IEEE Transactions on, 20 (2012), 135-152. |
[7] |
A. F. Filippove, Differential Equations with Discontinuous Right-Hand Side, Mathematics and Its Applications (Soviet Series), Boston, MA: Kluwer, 1988. |
[8] |
M. Forti, P. Nistri and M. Quincampoix, Convergence of neural networks for programming problems via a nonsmooth Łojasiewicz inequality, Neural Networks, IEEE Transactions on, 17 (2006), 1471-1486. |
[9] |
M. Forti and A. Tesi, Absolute stability of analytic neural networks: An approach based on finite trajectory length, Circuits System I, IEEE Transation on, 51 (2004), 2460-2469.
doi: 10.1109/TCSI.2004.838143. |
[10] |
B. Haasdonk, Feature space interpretation of svms with indefinite kernels, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27 (2005), 482-492.
doi: 10.1109/TPAMI.2005.78. |
[11] |
M. Hein and O. Bousquet, Hilbertian metrics and positive definite kernels on probability measures, In Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, (eds. Z. Ghahramani and R. Cowell), Society for Artificial Intelligence and Statistics, United States, (2005), 136-143. |
[12] |
J. J. Hopfield and D. W. Tank, "Neural" computation of decisions in optimization problems, Biological cybernetics, 52 (1985), 141-152. |
[13] |
R. Luss and A. d'Aspremon, Support vector machine classification with indefinite kernels, Mathematical Programming Computation, 1 (2009), 97-118.
doi: 10.1007/s12532-009-0005-5. |
[14] |
I. Mierswa, Making Indefinite Kernel Learning Practical, Technical report, Artificial Intelligence Unit Department of Computer Science University of Dortmund, 2006. |
[15] |
J. C. Platt, Fast training of support vector machines using sequential minimal optimization, In Advances in Kernel Methods, (eds. Schölkopf, C. Burges and A. Smola), MIT, (1999), 185-208. |
[16] |
T. Rockafellar and R. Wets, Variational Analysis, Springer-Verlag, Germany, 1998.
doi: 10.1007/978-3-642-02431-3. |
[17] |
S. Shalev-Shwartz, Y. Singer, N. Srebro and A. Cotter, Pegasos: Primal estimated sub-gradient solver for SVM, Math. Program., 127 (2011), 3-30.
doi: 10.1007/s10107-010-0420-4. |
[18] |
H. Saigo, J. P. Vert, N. Ueda and T. Akutsu, Protein homology detection using string alignment kernels, Bioinformatics, 20 (2004), 1682-1689.
doi: 10.1093/bioinformatics/bth141. |
[19] |
B. Schölkopf and A. J. Smola, Learning with Kernels, MIT, Cambridge, MA, 2002. |
[20] |
B. Schölkopf, P. Simard, A. J. Smola and V. N. Vapnik, Prior Knowledge in Support Vector Kernels, MIT, Cambridge, MA, 1998. |
[21] |
V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998. |
[22] |
B. Wei and X. Xiaoping, Subgradient-based neural networks for nonsmooth nonconvex optimization problems, Circuits and Systems I: Regular Papers, IEEE Transactions on, 55 (2008), 2378-2391.
doi: 10.1109/TCSI.2008.920131. |
[23] |
Y. Xia and J. Wang, A one-layer recurrent neural network for support vector machine learning, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34 (2004), 1621-1629.
doi: 10.1109/TSMCB.2003.822955. |
[24] |
S. Ziye and J. Qingwei, Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems, Journal of Industrial and Management Optimization, 10 (2014), 871-882.
doi: 10.3934/jimo.2014.10.871. |
[1] |
Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417 |
[2] |
Yubo Yuan, Weiguo Fan, Dongmei Pu. Spline function smooth support vector machine for classification. Journal of Industrial and Management Optimization, 2007, 3 (3) : 529-542. doi: 10.3934/jimo.2007.3.529 |
[3] |
Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial and Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611 |
[4] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[5] |
Jian Luo, Shu-Cherng Fang, Yanqin Bai, Zhibin Deng. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. Journal of Industrial and Management Optimization, 2016, 12 (1) : 357-373. doi: 10.3934/jimo.2016.12.357 |
[6] |
Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1199-1218. doi: 10.3934/dcdss.2019083 |
[7] |
Fatemeh Bazikar, Saeed Ketabchi, Hossein Moosaei. Smooth augmented Lagrangian method for twin bounded support vector machine. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021027 |
[8] |
Xin Yan, Hongmiao Zhu. A kernel-free fuzzy support vector machine with Universum. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021184 |
[9] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1835-1861. doi: 10.3934/jimo.2021046 |
[10] |
Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014 |
[11] |
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267 |
[12] |
Huiqin Zhang, JinChun Wang, Meng Wang, Xudong Chen. Integration of cuckoo search and fuzzy support vector machine for intelligent diagnosis of production process quality. Journal of Industrial and Management Optimization, 2022, 18 (1) : 195-217. doi: 10.3934/jimo.2020150 |
[13] |
Qianru Zhai, Ye Tian, Jingyue Zhou. A SMOTE-based quadratic surface support vector machine for imbalanced classification with mislabeled information. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021230 |
[14] |
Kongzhi Li, Xiaoping Xue. The Łojasiewicz inequality for free energy functionals on a graph. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022066 |
[15] |
Yacine Chitour, Zhenyu Liao, Romain Couillet. A geometric approach of gradient descent algorithms in linear neural networks. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022021 |
[16] |
Ying Sue Huang. Resynchronization of delayed neural networks. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397 |
[17] |
K. Schittkowski. Optimal parameter selection in support vector machines. Journal of Industrial and Management Optimization, 2005, 1 (4) : 465-476. doi: 10.3934/jimo.2005.1.465 |
[18] |
Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial and Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031 |
[19] |
Florian Dumpert. Quantitative robustness of localized support vector machines. Communications on Pure and Applied Analysis, 2020, 19 (8) : 3947-3956. doi: 10.3934/cpaa.2020174 |
[20] |
Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial and Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]