-
Previous Article
An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
- JIMO Home
- This Issue
-
Next Article
Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback
1. | Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Vietnam, Vietnam |
2. | Université de Limoges, Laboratoire XLIM, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France |
References:
[1] |
F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.
doi: 10.1016/j.automatica.2005.09.007. |
[2] |
F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.
doi: 10.1016/j.automatica.2013.04.004. |
[3] |
E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.
doi: 10.1016/j.automatica.2005.08.012. |
[4] |
S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).
doi: 10.1137/1.9781611970777. |
[5] |
P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83. Google Scholar |
[6] |
E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.
doi: 10.1080/0020717021000049151. |
[7] |
P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995). Google Scholar |
[8] |
G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.
doi: 10.1109/TAC.2008.2008325. |
[9] |
L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.
|
[10] |
V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).
|
[11] |
O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.
doi: 10.1007/s10957-008-9357-7. |
[12] |
H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.
doi: 10.1016/j.nahs.2012.03.001. |
[13] |
Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.
doi: 10.1016/j.cnsns.2008.03.010. |
[14] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.
doi: 10.1016/j.sysconle.2007.12.002. |
[15] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[16] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[17] |
A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.
doi: 10.1016/j.automatica.2013.05.030. |
[18] |
L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.
doi: 10.1093/imamci/dnm028. |
[19] |
Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.
doi: 10.1016/j.cnsns.2011.09.022. |
[20] |
W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.
doi: 10.1016/j.jfranklin.2010.12.001. |
[21] |
H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.
doi: 10.3934/jimo.2009.5.153. |
[22] |
Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.
doi: 10.1016/j.amc.2011.11.057. |
show all references
References:
[1] |
F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.
doi: 10.1016/j.automatica.2005.09.007. |
[2] |
F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.
doi: 10.1016/j.automatica.2013.04.004. |
[3] |
E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.
doi: 10.1016/j.automatica.2005.08.012. |
[4] |
S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).
doi: 10.1137/1.9781611970777. |
[5] |
P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83. Google Scholar |
[6] |
E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.
doi: 10.1080/0020717021000049151. |
[7] |
P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995). Google Scholar |
[8] |
G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.
doi: 10.1109/TAC.2008.2008325. |
[9] |
L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.
|
[10] |
V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).
|
[11] |
O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.
doi: 10.1007/s10957-008-9357-7. |
[12] |
H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.
doi: 10.1016/j.nahs.2012.03.001. |
[13] |
Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.
doi: 10.1016/j.cnsns.2008.03.010. |
[14] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.
doi: 10.1016/j.sysconle.2007.12.002. |
[15] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[16] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[17] |
A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.
doi: 10.1016/j.automatica.2013.05.030. |
[18] |
L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.
doi: 10.1093/imamci/dnm028. |
[19] |
Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.
doi: 10.1016/j.cnsns.2011.09.022. |
[20] |
W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.
doi: 10.1016/j.jfranklin.2010.12.001. |
[21] |
H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.
doi: 10.3934/jimo.2009.5.153. |
[22] |
Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.
doi: 10.1016/j.amc.2011.11.057. |
[1] |
K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019050 |
[2] |
Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653 |
[3] |
Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387 |
[4] |
Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193 |
[5] |
Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020098 |
[6] |
Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721 |
[7] |
Li-Min Wang, Jing-Xian Yu, Jia Shi, Fu-Rong Gao. Delay-range dependent $H_\infty$ control for uncertain 2D-delayed systems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 11-23. doi: 10.3934/naco.2015.5.11 |
[8] |
Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481 |
[9] |
Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693 |
[10] |
Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023 |
[11] |
M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365 |
[12] |
Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 |
[13] |
Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061 |
[14] |
Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225 |
[15] |
Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015 |
[16] |
Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192 |
[17] |
Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial & Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153 |
[18] |
Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463 |
[19] |
Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020 |
[20] |
Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]