• Previous Article
    An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
  • JIMO Home
  • This Issue
  • Next Article
    Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
January  2016, 12(1): 303-315. doi: 10.3934/jimo.2016.12.303

Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback

1. 

Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Vietnam, Vietnam

2. 

Université de Limoges, Laboratoire XLIM, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France

Received  November 2014 Revised  January 2015 Published  April 2015

This paper studies the robust finite-time $H_\infty$ control for a class of nonlinear systems with time-varying delay and disturbances via output feedback. Based on the Lyapunov functional method and a generalized Jensen integral inequality, novel delay-dependent conditions for the existence of output feedback controllers are established in terms of linear matrix inequalities (LMIs). The proposed conditions allow us to design the output feedback controllers which robustly stabilize the closed-loop system in the finite-time sense. An application to $H_\infty$ control of uncertain linear systems with interval time-varying delay is also given. A numerical example is given to illustrate the efficiency of the proposed method.
Citation: Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303
References:
[1]

F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.  doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.  doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[5]

P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83.   Google Scholar

[6]

E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.  doi: 10.1080/0020717021000049151.  Google Scholar

[7]

P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995).   Google Scholar

[8]

G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.  doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[10]

V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).   Google Scholar

[11]

O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.  doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.  doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.  doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.  doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.  doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.  doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.  doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.  doi: 10.1016/j.amc.2011.11.057.  Google Scholar

show all references

References:
[1]

F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.  doi: 10.1016/j.automatica.2005.09.007.  Google Scholar

[2]

F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.  doi: 10.1016/j.automatica.2013.04.004.  Google Scholar

[3]

E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.  doi: 10.1016/j.automatica.2005.08.012.  Google Scholar

[4]

S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).  doi: 10.1137/1.9781611970777.  Google Scholar

[5]

P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83.   Google Scholar

[6]

E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.  doi: 10.1080/0020717021000049151.  Google Scholar

[7]

P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995).   Google Scholar

[8]

G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.  doi: 10.1109/TAC.2008.2008325.  Google Scholar

[9]

L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.   Google Scholar

[10]

V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).   Google Scholar

[11]

O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.  doi: 10.1007/s10957-008-9357-7.  Google Scholar

[12]

H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.  doi: 10.1016/j.nahs.2012.03.001.  Google Scholar

[13]

Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.  doi: 10.1016/j.cnsns.2008.03.010.  Google Scholar

[14]

E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.  doi: 10.1016/j.sysconle.2007.12.002.  Google Scholar

[15]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[16]

T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.  doi: 10.1007/s10957-011-9858-7.  Google Scholar

[17]

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.  doi: 10.1016/j.automatica.2013.05.030.  Google Scholar

[18]

L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.  doi: 10.1093/imamci/dnm028.  Google Scholar

[19]

Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.  doi: 10.1016/j.cnsns.2011.09.022.  Google Scholar

[20]

W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.  doi: 10.1016/j.jfranklin.2010.12.001.  Google Scholar

[21]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[22]

Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.  doi: 10.1016/j.amc.2011.11.057.  Google Scholar

[1]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[2]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[3]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[6]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[7]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[12]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[13]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[14]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[15]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[20]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]