-
Previous Article
An alternating direction method for solving a class of inverse semi-definite quadratic programming problems
- JIMO Home
- This Issue
-
Next Article
Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels
Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback
1. | Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi 10307, Vietnam, Vietnam |
2. | Université de Limoges, Laboratoire XLIM, 123, avenue Albert Thomas, 87060 Limoges CEDEX, France |
References:
[1] |
F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.
doi: 10.1016/j.automatica.2005.09.007. |
[2] |
F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.
doi: 10.1016/j.automatica.2013.04.004. |
[3] |
E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.
doi: 10.1016/j.automatica.2005.08.012. |
[4] |
S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).
doi: 10.1137/1.9781611970777. |
[5] |
P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83. Google Scholar |
[6] |
E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.
doi: 10.1080/0020717021000049151. |
[7] |
P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995). Google Scholar |
[8] |
G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.
doi: 10.1109/TAC.2008.2008325. |
[9] |
L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.
|
[10] |
V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).
|
[11] |
O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.
doi: 10.1007/s10957-008-9357-7. |
[12] |
H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.
doi: 10.1016/j.nahs.2012.03.001. |
[13] |
Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.
doi: 10.1016/j.cnsns.2008.03.010. |
[14] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.
doi: 10.1016/j.sysconle.2007.12.002. |
[15] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[16] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[17] |
A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.
doi: 10.1016/j.automatica.2013.05.030. |
[18] |
L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.
doi: 10.1093/imamci/dnm028. |
[19] |
Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.
doi: 10.1016/j.cnsns.2011.09.022. |
[20] |
W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.
doi: 10.1016/j.jfranklin.2010.12.001. |
[21] |
H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.
doi: 10.3934/jimo.2009.5.153. |
[22] |
Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.
doi: 10.1016/j.amc.2011.11.057. |
show all references
References:
[1] |
F. Amato, M. Ariola and C. Cosentino, Finite-time stabilization via dynamic output feedback,, Automatica, 42 (2006), 337.
doi: 10.1016/j.automatica.2005.09.007. |
[2] |
F. Amato, G. De Tommasi and A. Pironti, Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems,, Automatica, 49 (2013), 2546.
doi: 10.1016/j.automatica.2013.04.004. |
[3] |
E. K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach,, Automatica, 42 (2006), 183.
doi: 10.1016/j.automatica.2005.08.012. |
[4] |
S. Boyd, L. El. Ghaoui and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,, SIAM, (1994).
doi: 10.1137/1.9781611970777. |
[5] |
P. Dorato, Short time stability in linear time-varying systems,, In Proc IRE Int Convention Record, 4 (1961), 83. Google Scholar |
[6] |
E. Fridman and U. Shaked, Delay-dependent stability and $H_{\infty}$control: constant and time-varying delays,, International Journal of Control, 76 (2003), 48.
doi: 10.1080/0020717021000049151. |
[7] |
P. Gahinet, A. Nemirovskii, A. J. Laub and M. Chilali, LMI Control Toolbox For use with MATLAB,, The MathWorks, (1995). Google Scholar |
[8] |
G. Garcia, S. Tarbouriech and J. Bernussou, Finite-time stabilization of linear time-varying continuous systems,, IEEE Transactions on Automatic Control, 54 (2009), 364.
doi: 10.1109/TAC.2008.2008325. |
[9] |
L. Gollmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Journal of Industrial and Management Optimization, 10 (2014), 413.
|
[10] |
V. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,, Control Engineering. Birkhäuser/Springer, (2013).
|
[11] |
O. M. Kwon, J. H. Park and S. M. Lee, Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach,, Journal of Optimization Theory and Applications, 137 (2008), 521.
doi: 10.1007/s10957-008-9357-7. |
[12] |
H. Liu, Y. Shen and X. Zhao, Delay-dependent observer-based $H_\infty$ finite-time control for switched systems with time-varying delay,, Nonlinear Analysis: Hybrid Systems, 6 (2012), 885.
doi: 10.1016/j.nahs.2012.03.001. |
[13] |
Q. Y. Meng and Y. J Shen, Finite-time $H_\infty$ control for linear continuous system with norm-bounded disturbance,, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 1043.
doi: 10.1016/j.cnsns.2008.03.010. |
[14] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems,, Systems and Control Letters, 57 (2008), 561.
doi: 10.1016/j.sysconle.2007.12.002. |
[15] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[16] |
T. Senthilkumar and P. Balasubramaniam, Delay-dependent robust stabilization and $H_\infty$ control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,, Journal of Optimization Theory and Applications, 151 (2011), 100.
doi: 10.1007/s10957-011-9858-7. |
[17] |
A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,, Automatica, 49 (2013), 2860.
doi: 10.1016/j.automatica.2013.05.030. |
[18] |
L. Wu, J. Lam and C. Wang, Robust $H_{\infty}$ dynamic output feedback control for 2D linear parameter-varying systems,, IMA journal of mathematical control and information, 26 (2009), 23.
doi: 10.1093/imamci/dnm028. |
[19] |
Z. Xiang, Y. N. Sun and M. S. Mahmoud, Robust finite-time $H_\infty$ control for a class of uncertain switched neutral systems,, Communications in Nonlinear Science Numerical Simulations, 17 (2012), 1766.
doi: 10.1016/j.cnsns.2011.09.022. |
[20] |
W. Xiang and J. Xiao, $H_{\infty}$ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance,, Journal of the Franklin Institute, 348 (2011), 331.
doi: 10.1016/j.jfranklin.2010.12.001. |
[21] |
H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach,, Journal of Industrial and Management Optimization, 5 (2009), 153.
doi: 10.3934/jimo.2009.5.153. |
[22] |
Y. Zhang, C. Liu and X. Mu, Robust finite-time $H_\infty$ control of singular stochastic systems via static output feedback,, Applied Mathematics and Computation, 218 (2012), 5629.
doi: 10.1016/j.amc.2011.11.057. |
[1] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[2] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[3] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[4] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[5] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[6] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[7] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[8] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[9] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[10] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[11] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[12] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[13] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[14] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[15] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[16] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[17] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[18] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[19] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[20] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]