• Previous Article
    Discount-offering and demand-rejection decisions for substitutable products with different profit levels
  • JIMO Home
  • This Issue
  • Next Article
    Global stabilization for ball-and-beam systems via state and partial state feedback
January  2016, 12(1): 31-43. doi: 10.3934/jimo.2016.12.31

Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims

1. 

International Center of Management Science and Engineering, School of Management and Engineering, Nanjing University, Nanjing, 210093, China, China, China

2. 

Department of Mathematics, Zaozhuang University, Zaozhuang, 277160, China

Received  December 2012 Revised  November 2014 Published  April 2015

This paper investigates the asymptotic behavior of the random-time ruin probability in a time-dependent renewal risk model with pairwise quasi-asymptotically independent and subexponential claims, where the time-dependence structure is constructed between a claim size and its inter-arrival time, and described by a conditional tail probability of the claim size given the inter-arrival time before the claim occurs. In particular, the results we obtained are also valid for the finite-time ruin probability.
Citation: Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31
References:
[1]

A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.  doi: 10.1080/03461230802700897.  Google Scholar

[2]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).  doi: 10.1017/CBO9780511721434.  Google Scholar

[3]

Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.  doi: 10.1080/15326340802641006.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).  doi: 10.1007/978-3-642-33483-2.  Google Scholar

[6]

Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.  doi: 10.4134/JKMS.2014.51.4.735.  Google Scholar

[7]

Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.  doi: 10.1216/RMJ-2014-44-5-1505.  Google Scholar

[8]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[9]

Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.  doi: 10.1016/j.jmaa.2014.05.069.  Google Scholar

[10]

Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.  doi: 10.4134/BKMS.2013.50.2.611.  Google Scholar

[11]

Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014).   Google Scholar

[12]

J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.  doi: 10.1007/s10986-009-9032-1.  Google Scholar

[13]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.  doi: 10.1016/j.insmatheco.2006.07.006.  Google Scholar

[14]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.  doi: 10.1002/asmb.747.  Google Scholar

[15]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.  doi: 10.1239/aap/1293113154.  Google Scholar

[16]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.  doi: 10.1023/A:1025148622954.  Google Scholar

[17]

Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.  doi: 10.1081/STM-200025739.  Google Scholar

[18]

K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[19]

Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[20]

Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.  doi: 10.3934/jimo.2009.5.719.  Google Scholar

[21]

Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.  doi: 10.1016/j.jmaa.2011.05.013.  Google Scholar

show all references

References:
[1]

A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.  doi: 10.1080/03461230802700897.  Google Scholar

[2]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).  doi: 10.1017/CBO9780511721434.  Google Scholar

[3]

Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.  doi: 10.1080/15326340802641006.  Google Scholar

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[5]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).  doi: 10.1007/978-3-642-33483-2.  Google Scholar

[6]

Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.  doi: 10.4134/JKMS.2014.51.4.735.  Google Scholar

[7]

Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.  doi: 10.1216/RMJ-2014-44-5-1505.  Google Scholar

[8]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.  doi: 10.1016/j.spl.2013.02.018.  Google Scholar

[9]

Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.  doi: 10.1016/j.jmaa.2014.05.069.  Google Scholar

[10]

Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.  doi: 10.4134/BKMS.2013.50.2.611.  Google Scholar

[11]

Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014).   Google Scholar

[12]

J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.  doi: 10.1007/s10986-009-9032-1.  Google Scholar

[13]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.  doi: 10.1016/j.insmatheco.2006.07.006.  Google Scholar

[14]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.  doi: 10.1002/asmb.747.  Google Scholar

[15]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.  doi: 10.1239/aap/1293113154.  Google Scholar

[16]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.  doi: 10.1023/A:1025148622954.  Google Scholar

[17]

Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.  doi: 10.1081/STM-200025739.  Google Scholar

[18]

K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.  doi: 10.1007/s11009-011-9226-y.  Google Scholar

[19]

Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.  doi: 10.1016/j.jmaa.2012.01.025.  Google Scholar

[20]

Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.  doi: 10.3934/jimo.2009.5.719.  Google Scholar

[21]

Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.  doi: 10.1016/j.jmaa.2011.05.013.  Google Scholar

[1]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[2]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[3]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[4]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[6]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[7]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[8]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[9]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[10]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[11]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[12]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[17]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[18]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[19]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[20]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (1)

[Back to Top]