-
Previous Article
Discount-offering and demand-rejection decisions for substitutable products with different profit levels
- JIMO Home
- This Issue
-
Next Article
Global stabilization for ball-and-beam systems via state and partial state feedback
Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims
1. | International Center of Management Science and Engineering, School of Management and Engineering, Nanjing University, Nanjing, 210093, China, China, China |
2. | Department of Mathematics, Zaozhuang University, Zaozhuang, 277160, China |
References:
[1] |
A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.
doi: 10.1080/03461230802700897. |
[2] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).
doi: 10.1017/CBO9780511721434. |
[3] |
Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.
doi: 10.1080/15326340802641006. |
[4] |
D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.
doi: 10.1016/0304-4149(94)90113-9. |
[5] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).
doi: 10.1007/978-3-642-33483-2. |
[6] |
Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.
doi: 10.4134/JKMS.2014.51.4.735. |
[7] |
Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.
doi: 10.1216/RMJ-2014-44-5-1505. |
[8] |
Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.
doi: 10.1016/j.spl.2013.02.018. |
[9] |
Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.
doi: 10.1016/j.jmaa.2014.05.069. |
[10] |
Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.
doi: 10.4134/BKMS.2013.50.2.611. |
[11] |
Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014). Google Scholar |
[12] |
J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.
doi: 10.1007/s10986-009-9032-1. |
[13] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.
doi: 10.1016/j.insmatheco.2006.07.006. |
[14] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.
doi: 10.1002/asmb.747. |
[15] |
J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.
doi: 10.1239/aap/1293113154. |
[16] |
S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.
doi: 10.1023/A:1025148622954. |
[17] |
Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.
doi: 10.1081/STM-200025739. |
[18] |
K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.
doi: 10.1007/s11009-011-9226-y. |
[19] |
Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.
doi: 10.1016/j.jmaa.2012.01.025. |
[20] |
Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.
doi: 10.3934/jimo.2009.5.719. |
[21] |
Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.
doi: 10.1016/j.jmaa.2011.05.013. |
show all references
References:
[1] |
A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., (2010), 93.
doi: 10.1080/03461230802700897. |
[2] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation,, Cambridge University Press, (1987).
doi: 10.1017/CBO9780511721434. |
[3] |
Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation,, Stochastic Models, 25 (2009), 76.
doi: 10.1080/15326340802641006. |
[4] |
D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.
doi: 10.1016/0304-4149(94)90113-9. |
[5] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance,, Springer, (1997).
doi: 10.1007/978-3-642-33483-2. |
[6] |
Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest,, J. Korean Math. Soc., 51 (2014), 735.
doi: 10.4134/JKMS.2014.51.4.735. |
[7] |
Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force,, Rocky Mountain J. Math., 44 (2014), 1505.
doi: 10.1216/RMJ-2014-44-5-1505. |
[8] |
Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest,, Stat. Probab. Lett., 83 (2013), 1527.
doi: 10.1016/j.spl.2013.02.018. |
[9] |
Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest,, J. Math. Anal. Appl., 419 (2014), 1193.
doi: 10.1016/j.jmaa.2014.05.069. |
[10] |
Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force,, Bull. Korean Math. Soc., 50 (2013), 611.
doi: 10.4134/BKMS.2013.50.2.611. |
[11] |
Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest,, to appear in Bull. Korean Math. Soc., (2014). Google Scholar |
[12] |
J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability,, Lith. Math. J., 49 (2009), 55.
doi: 10.1007/s10986-009-9032-1. |
[13] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes,, Insurance Math. Econom., 40 (2007), 498.
doi: 10.1016/j.insmatheco.2006.07.006. |
[14] |
R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model,, Appl. Stoch. Models Bus. Ind., 25 (2009), 309.
doi: 10.1002/asmb.747. |
[15] |
J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Proba., 42 (2010), 1126.
doi: 10.1239/aap/1293113154. |
[16] |
S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extrems, 5 (2002), 303.
doi: 10.1023/A:1025148622954. |
[17] |
Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation,, Stoch. Models, 20 (2004), 281.
doi: 10.1081/STM-200025739. |
[18] |
K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate,, Methodol. Comput. Appl. Probab., 15 (2013), 109.
doi: 10.1007/s11009-011-9226-y. |
[19] |
Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times,, J. Math. Anal. Appl., 390 (2012), 208.
doi: 10.1016/j.jmaa.2012.01.025. |
[20] |
Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims,, J. Ind. Manag. Optim., 5 (2009), 719.
doi: 10.3934/jimo.2009.5.719. |
[21] |
Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model,, J. Math. Anal. Appl., 383 (2011), 215.
doi: 10.1016/j.jmaa.2011.05.013. |
[1] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[2] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[3] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[4] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[5] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[6] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[7] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[8] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[9] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[10] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[11] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[12] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[13] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[14] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[15] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[16] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[17] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[18] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[19] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[20] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]