• Previous Article
    Discount-offering and demand-rejection decisions for substitutable products with different profit levels
  • JIMO Home
  • This Issue
  • Next Article
    Global stabilization for ball-and-beam systems via state and partial state feedback
January  2016, 12(1): 31-43. doi: 10.3934/jimo.2016.12.31

Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims

1. 

International Center of Management Science and Engineering, School of Management and Engineering, Nanjing University, Nanjing, 210093, China, China, China

2. 

Department of Mathematics, Zaozhuang University, Zaozhuang, 277160, China

Received  December 2012 Revised  November 2014 Published  April 2015

This paper investigates the asymptotic behavior of the random-time ruin probability in a time-dependent renewal risk model with pairwise quasi-asymptotically independent and subexponential claims, where the time-dependence structure is constructed between a claim size and its inter-arrival time, and described by a conditional tail probability of the claim size given the inter-arrival time before the claim occurs. In particular, the results we obtained are also valid for the finite-time ruin probability.
Citation: Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial and Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31
References:
[1]

A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scand. Actuar. J., (2010), 93-104. doi: 10.1080/03461230802700897.

[2]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.

[3]

Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation, Stochastic Models, 25 (2009), 76-89. doi: 10.1080/15326340802641006.

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stoch. Proc. Appl., 49 (1994), 75-98. doi: 10.1016/0304-4149(94)90113-9.

[5]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997. doi: 10.1007/978-3-642-33483-2.

[6]

Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest, J. Korean Math. Soc., 51 (2014), 735-749. doi: 10.4134/JKMS.2014.51.4.735.

[7]

Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force, Rocky Mountain J. Math., 44 (2014), 1505-1528. doi: 10.1216/RMJ-2014-44-5-1505.

[8]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest, Stat. Probab. Lett., 83 (2013), 1527-1538. doi: 10.1016/j.spl.2013.02.018.

[9]

Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest, J. Math. Anal. Appl., 419 (2014), 1193-1213. doi: 10.1016/j.jmaa.2014.05.069.

[10]

Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force, Bull. Korean Math. Soc., 50 (2013), 611-626. doi: 10.4134/BKMS.2013.50.2.611.

[11]

Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest, to appear in Bull. Korean Math. Soc., (2014).

[12]

J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability, Lith. Math. J., 49 (2009), 55-61. doi: 10.1007/s10986-009-9032-1.

[13]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes, Insurance Math. Econom., 40 (2007), 498-508. doi: 10.1016/j.insmatheco.2006.07.006.

[14]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model, Appl. Stoch. Models Bus. Ind., 25 (2009), 309-321. doi: 10.1002/asmb.747.

[15]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Adv. Appl. Proba., 42 (2010), 1126-1146. doi: 10.1239/aap/1293113154.

[16]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence, Extrems, 5 (2002), 303-336. doi: 10.1023/A:1025148622954.

[17]

Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stoch. Models, 20 (2004), 281-297. doi: 10.1081/STM-200025739.

[18]

K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodol. Comput. Appl. Probab., 15 (2013), 109-124. doi: 10.1007/s11009-011-9226-y.

[19]

Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, J. Math. Anal. Appl., 390 (2012), 208-223. doi: 10.1016/j.jmaa.2012.01.025.

[20]

Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims, J. Ind. Manag. Optim., 5 (2009), 719-736. doi: 10.3934/jimo.2009.5.719.

[21]

Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model, J. Math. Anal. Appl., 383 (2011), 215-225. doi: 10.1016/j.jmaa.2011.05.013.

show all references

References:
[1]

A. Asimit and A. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scand. Actuar. J., (2010), 93-104. doi: 10.1080/03461230802700897.

[2]

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434.

[3]

Y. Chen and K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation, Stochastic Models, 25 (2009), 76-89. doi: 10.1080/15326340802641006.

[4]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stoch. Proc. Appl., 49 (1994), 75-98. doi: 10.1016/0304-4149(94)90113-9.

[5]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997. doi: 10.1007/978-3-642-33483-2.

[6]

Q. Gao and D. Bao, Asymptotic ruin probabilities in a generalized jump-diffusion risk model with constant force of interest, J. Korean Math. Soc., 51 (2014), 735-749. doi: 10.4134/JKMS.2014.51.4.735.

[7]

Q. Gao, N. Jin and H. Shen, Asymptotic behavior of the finite-time ruin probability with pairwise quasi-asymptotically independent claims and constant interest force, Rocky Mountain J. Math., 44 (2014), 1505-1528. doi: 10.1216/RMJ-2014-44-5-1505.

[8]

Q. Gao and X. Liu, Uniform asymptotics for the finite-time ruin probability with upper tail asymptotically independent claims and constant force of interest, Stat. Probab. Lett., 83 (2013), 1527-1538. doi: 10.1016/j.spl.2013.02.018.

[9]

Q. Gao and X. Yang, Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest, J. Math. Anal. Appl., 419 (2014), 1193-1213. doi: 10.1016/j.jmaa.2014.05.069.

[10]

Q. Gao and Y. Yang, Uniform asymptotics for the finite-time ruin probability in a general risk model with pairwise quasi-asymptotically independent claims and constant interest force, Bull. Korean Math. Soc., 50 (2013), 611-626. doi: 10.4134/BKMS.2013.50.2.611.

[11]

Q. Gao, E. Zhang and N. Jin, The ultimate ruin probability of a dependent delayed-claim risk model perturbed by diffusion with constant force of interest, to appear in Bull. Korean Math. Soc., (2014).

[12]

J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability, Lith. Math. J., 49 (2009), 55-61. doi: 10.1007/s10986-009-9032-1.

[13]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes, Insurance Math. Econom., 40 (2007), 498-508. doi: 10.1016/j.insmatheco.2006.07.006.

[14]

R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk model, Appl. Stoch. Models Bus. Ind., 25 (2009), 309-321. doi: 10.1002/asmb.747.

[15]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Adv. Appl. Proba., 42 (2010), 1126-1146. doi: 10.1239/aap/1293113154.

[16]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence, Extrems, 5 (2002), 303-336. doi: 10.1023/A:1025148622954.

[17]

Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stoch. Models, 20 (2004), 281-297. doi: 10.1081/STM-200025739.

[18]

K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodol. Comput. Appl. Probab., 15 (2013), 109-124. doi: 10.1007/s11009-011-9226-y.

[19]

Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, J. Math. Anal. Appl., 390 (2012), 208-223. doi: 10.1016/j.jmaa.2012.01.025.

[20]

Y. Wang, Q. Gao, K. Wang and X. Liu, Random time ruin probability for the renewal risk model with heavy-tailed claims, J. Ind. Manag. Optim., 5 (2009), 719-736. doi: 10.3934/jimo.2009.5.719.

[21]

Y. Yang, R. Leipus, J. Šiaulys and Y. Cang, Uniform estimates for the finite-time ruin probability in the dependent renewal risk model, J. Math. Anal. Appl., 383 (2011), 215-225. doi: 10.1016/j.jmaa.2011.05.013.

[1]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial and Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[2]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial and Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[3]

Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1541-1556. doi: 10.3934/jimo.2021032

[4]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[5]

Xinru Ji, Bingjie Wang, Jigao Yan, Dongya Cheng. Asymptotic estimates for finite-time ruin probabilities in a generalized dependent bidimensional risk model with CMC simulations. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022036

[6]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial and Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[7]

Xiaoqing Liang, Lihua Bai. Minimizing expected time to reach a given capital level before ruin. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1771-1791. doi: 10.3934/jimo.2017018

[8]

Shihu Li, Wei Liu, Yingchao Xie. Small time asymptotics for SPDEs with locally monotone coefficients. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4801-4822. doi: 10.3934/dcdsb.2020127

[9]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control and Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[10]

Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3615-3628. doi: 10.3934/dcdsb.2017182

[11]

P.E. Kloeden, Pedro Marín-Rubio. Equi-Attraction and the continuous dependence of attractors on time delays. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 581-593. doi: 10.3934/dcdsb.2008.9.581

[12]

Weizhong Huang, Xianyi Wu. Credibility models with dependence structure over risks and time horizon. Journal of Industrial and Management Optimization, 2015, 11 (2) : 365-380. doi: 10.3934/jimo.2015.11.365

[13]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial and Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[14]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial and Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[17]

Bernard Ducomet. Asymptotics for 1D flows with time-dependent external fields. Conference Publications, 2007, 2007 (Special) : 323-333. doi: 10.3934/proc.2007.2007.323

[18]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Time asymptotics of structured populations with diffusion and dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4087-4116. doi: 10.3934/dcdsb.2018127

[19]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic and Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[20]

Barry Simon. Zeros of OPUC and long time asymptotics of Schur and related flows. Inverse Problems and Imaging, 2007, 1 (1) : 189-215. doi: 10.3934/ipi.2007.1.189

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (1)

[Back to Top]