• Previous Article
    A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain
  • JIMO Home
  • This Issue
  • Next Article
    Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback
January  2016, 12(1): 317-336. doi: 10.3934/jimo.2016.12.317

An alternating direction method for solving a class of inverse semi-definite quadratic programming problems

1. 

Institute of Operations Research and Control Theory, School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China, China

2. 

School of Transportation and Logistics, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

Received  April 2013 Revised  January 2015 Published  April 2015

In this paper, we propose an alternating-direction-type numerical method to solve a class of inverse semi-definite quadratic programming problems. An explicit solution to one direction subproblem is given and the other direction subproblem is proved to be a convex quadratic programming problem over positive semi-definite symmetric matrix cone. We design a spectral projected gradient method for solving the quadratic matrix optimization problem and demonstrate its convergence. Numerical experiments illustrate that our method can solve inverse semi-definite quadratic programming problems efficiently.
Citation: Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317
References:
[1]

IEEE Transactions on image processing, 19 (2010), 2345-2356. doi: 10.1109/TIP.2010.2047910.  Google Scholar

[2]

Operations Research, 49 (2001), 771-783. doi: 10.1287/opre.49.5.771.10607.  Google Scholar

[3]

Networks, 40 (2002), 181-187. doi: 10.1002/net.10048.  Google Scholar

[4]

IMA Journal of Numerical Analysis, 8 (1988), 141-148. doi: 10.1093/imanum/8.1.141.  Google Scholar

[5]

IEEE Transactions on Automatic Control, 21 (1976), 174-184. doi: 10.1109/TAC.1976.1101194.  Google Scholar

[6]

SIAM Journal on Optimization, 10 (2000), 1196-1211. doi: 10.1137/S1052623497330963.  Google Scholar

[7]

E. Birgin, J. Martínez and M. Raydan, Spectral projected gradient methods: reviews and perspective,, Available from: , ().   Google Scholar

[8]

Foundations and Trends in Machine Learning, 3 (2011), 1-122. doi: 10.1561/2200000016.  Google Scholar

[9]

Mathematical Programming, 53 (1992), 45-61. doi: 10.1007/BF01585693.  Google Scholar

[10]

Journal of Global Optimization, 15 (1999), 213-218. doi: 10.1023/A:1008360312607.  Google Scholar

[11]

IMA Journal on Numerical Analysis, 22 (2002), 1-10. doi: 10.1093/imanum/22.1.1.  Google Scholar

[12]

Transactions of the American Mathematical Society, 82 (1956), 421-439. doi: 10.1090/S0002-9947-1956-0084194-4.  Google Scholar

[13]

SIAM Journal on Numerical Analysis, 36 (1999), 275-289. doi: 10.1137/S003614299427315X.  Google Scholar

[14]

Computers & Mathematics with Applications, 2 (1976), 17-40. doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[15]

SIAM, Philadelphia, 1989. doi: 10.1137/1.9781611970838.  Google Scholar

[16]

SIAM Journal on Imaging Sciences, 2 (2009), 323-343. doi: 10.1137/080725891.  Google Scholar

[17]

Journal of Combinatorial Optimization, 8 (2004), 329-361. doi: 10.1023/B:JOCO.0000038914.26975.9b.  Google Scholar

[18]

Mathematical Programming, 92 (2002), 103-118. doi: 10.1007/s101070100280.  Google Scholar

[19]

SIAM Journal on Optimization, 22 (2012), 313-340. doi: 10.1137/110822347.  Google Scholar

[20]

Operations Research Letters, 33 (2005), 319-330. doi: 10.1016/j.orl.2004.04.007.  Google Scholar

[21]

Journal of the Society for Industrial and Applied Mathematics, 3 (1955), 28-41. doi: 10.1137/0103003.  Google Scholar

[22]

IMA Journal of Numerical Analysis, 13 (1993), 321-326. doi: 10.1093/imanum/13.3.321.  Google Scholar

[23]

SIAM Journal on Optimization, 7 (1997), 26-33. doi: 10.1137/S1052623494266365.  Google Scholar

[24]

Springer-Verlag, New York, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[25]

Mathematical Programming, 114 (2008), 349-391. doi: 10.1007/s10107-007-0105-9.  Google Scholar

[26]

SIAM Journal on Control and Optimization, 29 (1991), 119-138. doi: 10.1137/0329006.  Google Scholar

[27]

Mathematical Programming, 48 (1990), 249-263. doi: 10.1007/BF01582258.  Google Scholar

[28]

Journal of Computational and Applied Mathematics, 223 (2009), 485-498. doi: 10.1016/j.cam.2008.01.028.  Google Scholar

[29]

Journal of Industrial and Management Optimization, 5 (2009), 319-339. doi: 10.3934/jimo.2009.5.319.  Google Scholar

[30]

SIAM Journal on Scientific Computing, 33 (2011), 250-278. doi: 10.1137/090777761.  Google Scholar

[31]

Journal of Computational and Applied Mathematics, 72 (1996), 261-273. doi: 10.1016/0377-0427(95)00277-4.  Google Scholar

[32]

Journal of Computational and Applied Mathematics, 106 (1999), 345-359. doi: 10.1016/S0377-0427(99)00080-1.  Google Scholar

[33]

European Journal of Operations Research, 124 (2000), 77-88. doi: 10.1016/S0377-2217(99)00122-8.  Google Scholar

[34]

Journal of Combinatorial Optimization, 3 (1999), 127-139. doi: 10.1023/A:1009829525096.  Google Scholar

[35]

Applied Mathematics and Optimization, 61 (2010), 57-83. doi: 10.1007/s00245-009-9075-z.  Google Scholar

show all references

References:
[1]

IEEE Transactions on image processing, 19 (2010), 2345-2356. doi: 10.1109/TIP.2010.2047910.  Google Scholar

[2]

Operations Research, 49 (2001), 771-783. doi: 10.1287/opre.49.5.771.10607.  Google Scholar

[3]

Networks, 40 (2002), 181-187. doi: 10.1002/net.10048.  Google Scholar

[4]

IMA Journal of Numerical Analysis, 8 (1988), 141-148. doi: 10.1093/imanum/8.1.141.  Google Scholar

[5]

IEEE Transactions on Automatic Control, 21 (1976), 174-184. doi: 10.1109/TAC.1976.1101194.  Google Scholar

[6]

SIAM Journal on Optimization, 10 (2000), 1196-1211. doi: 10.1137/S1052623497330963.  Google Scholar

[7]

E. Birgin, J. Martínez and M. Raydan, Spectral projected gradient methods: reviews and perspective,, Available from: , ().   Google Scholar

[8]

Foundations and Trends in Machine Learning, 3 (2011), 1-122. doi: 10.1561/2200000016.  Google Scholar

[9]

Mathematical Programming, 53 (1992), 45-61. doi: 10.1007/BF01585693.  Google Scholar

[10]

Journal of Global Optimization, 15 (1999), 213-218. doi: 10.1023/A:1008360312607.  Google Scholar

[11]

IMA Journal on Numerical Analysis, 22 (2002), 1-10. doi: 10.1093/imanum/22.1.1.  Google Scholar

[12]

Transactions of the American Mathematical Society, 82 (1956), 421-439. doi: 10.1090/S0002-9947-1956-0084194-4.  Google Scholar

[13]

SIAM Journal on Numerical Analysis, 36 (1999), 275-289. doi: 10.1137/S003614299427315X.  Google Scholar

[14]

Computers & Mathematics with Applications, 2 (1976), 17-40. doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[15]

SIAM, Philadelphia, 1989. doi: 10.1137/1.9781611970838.  Google Scholar

[16]

SIAM Journal on Imaging Sciences, 2 (2009), 323-343. doi: 10.1137/080725891.  Google Scholar

[17]

Journal of Combinatorial Optimization, 8 (2004), 329-361. doi: 10.1023/B:JOCO.0000038914.26975.9b.  Google Scholar

[18]

Mathematical Programming, 92 (2002), 103-118. doi: 10.1007/s101070100280.  Google Scholar

[19]

SIAM Journal on Optimization, 22 (2012), 313-340. doi: 10.1137/110822347.  Google Scholar

[20]

Operations Research Letters, 33 (2005), 319-330. doi: 10.1016/j.orl.2004.04.007.  Google Scholar

[21]

Journal of the Society for Industrial and Applied Mathematics, 3 (1955), 28-41. doi: 10.1137/0103003.  Google Scholar

[22]

IMA Journal of Numerical Analysis, 13 (1993), 321-326. doi: 10.1093/imanum/13.3.321.  Google Scholar

[23]

SIAM Journal on Optimization, 7 (1997), 26-33. doi: 10.1137/S1052623494266365.  Google Scholar

[24]

Springer-Verlag, New York, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[25]

Mathematical Programming, 114 (2008), 349-391. doi: 10.1007/s10107-007-0105-9.  Google Scholar

[26]

SIAM Journal on Control and Optimization, 29 (1991), 119-138. doi: 10.1137/0329006.  Google Scholar

[27]

Mathematical Programming, 48 (1990), 249-263. doi: 10.1007/BF01582258.  Google Scholar

[28]

Journal of Computational and Applied Mathematics, 223 (2009), 485-498. doi: 10.1016/j.cam.2008.01.028.  Google Scholar

[29]

Journal of Industrial and Management Optimization, 5 (2009), 319-339. doi: 10.3934/jimo.2009.5.319.  Google Scholar

[30]

SIAM Journal on Scientific Computing, 33 (2011), 250-278. doi: 10.1137/090777761.  Google Scholar

[31]

Journal of Computational and Applied Mathematics, 72 (1996), 261-273. doi: 10.1016/0377-0427(95)00277-4.  Google Scholar

[32]

Journal of Computational and Applied Mathematics, 106 (1999), 345-359. doi: 10.1016/S0377-0427(99)00080-1.  Google Scholar

[33]

European Journal of Operations Research, 124 (2000), 77-88. doi: 10.1016/S0377-2217(99)00122-8.  Google Scholar

[34]

Journal of Combinatorial Optimization, 3 (1999), 127-139. doi: 10.1023/A:1009829525096.  Google Scholar

[35]

Applied Mathematics and Optimization, 61 (2010), 57-83. doi: 10.1007/s00245-009-9075-z.  Google Scholar

[1]

Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030

[2]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[3]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[4]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[5]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[6]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

[10]

Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021082

[11]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[12]

Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021039

[13]

Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021003

[14]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[15]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[16]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[17]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[18]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[19]

Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257

[20]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]