• Previous Article
    Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback
  • JIMO Home
  • This Issue
  • Next Article
    A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain
January  2016, 12(1): 317-336. doi: 10.3934/jimo.2016.12.317

An alternating direction method for solving a class of inverse semi-definite quadratic programming problems

1. 

Institute of Operations Research and Control Theory, School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China, China

2. 

School of Transportation and Logistics, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

Received  April 2013 Revised  January 2015 Published  April 2015

In this paper, we propose an alternating-direction-type numerical method to solve a class of inverse semi-definite quadratic programming problems. An explicit solution to one direction subproblem is given and the other direction subproblem is proved to be a convex quadratic programming problem over positive semi-definite symmetric matrix cone. We design a spectral projected gradient method for solving the quadratic matrix optimization problem and demonstrate its convergence. Numerical experiments illustrate that our method can solve inverse semi-definite quadratic programming problems efficiently.
Citation: Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317
References:
[1]

M. Afonso, J. Bioucas-Dias and M. Figueiredo, Fast image recovery using variable splitting and constrained optimization,, IEEE Transactions on image processing, 19 (2010), 2345. doi: 10.1109/TIP.2010.2047910. Google Scholar

[2]

R. Ahuja and J. Orlin, Inverse optimization,, Operations Research, 49 (2001), 771. doi: 10.1287/opre.49.5.771.10607. Google Scholar

[3]

R. Ahuja and J. Orlin, Combinatorial algorithms for inverse network flow problems,, Networks, 40 (2002), 181. doi: 10.1002/net.10048. Google Scholar

[4]

J. Barzilai and J. M. Borwein, Two point step size gradient methods,, IMA Journal of Numerical Analysis, 8 (1988), 141. doi: 10.1093/imanum/8.1.141. Google Scholar

[5]

D. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method,, IEEE Transactions on Automatic Control, 21 (1976), 174. doi: 10.1109/TAC.1976.1101194. Google Scholar

[6]

E. Birgin, J. Martínez and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets,, SIAM Journal on Optimization, 10 (2000), 1196. doi: 10.1137/S1052623497330963. Google Scholar

[7]

E. Birgin, J. Martínez and M. Raydan, Spectral projected gradient methods: reviews and perspective,, Available from: , (). Google Scholar

[8]

S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers,, Foundations and Trends in Machine Learning, 3 (2011), 1. doi: 10.1561/2200000016. Google Scholar

[9]

W. Burton and P. Toint, On an instance of the inverse shortest paths problem,, Mathematical Programming, 53 (1992), 45. doi: 10.1007/BF01585693. Google Scholar

[10]

M. Cai, X. Yang and J. Zhang, The complexity analysis of the inverse center location problem,, Journal of Global Optimization, 15 (1999), 213. doi: 10.1023/A:1008360312607. Google Scholar

[11]

Y. Dai and L. Liao, R-linear convergence of the Barzilai and Borwein gradient method,, IMA Journal on Numerical Analysis, 22 (2002), 1. doi: 10.1093/imanum/22.1.1. Google Scholar

[12]

J. Douglas and H. Rachford, On the numerical solution of the heat conduction problem in two and three space variables,, Transactions of the American Mathematical Society, 82 (1956), 421. doi: 10.1090/S0002-9947-1956-0084194-4. Google Scholar

[13]

A. Friedlander, J. M. Martínez, B. Molina and M. Raydan, Gradient method with retards and generalizations,, SIAM Journal on Numerical Analysis, 36 (1999), 275. doi: 10.1137/S003614299427315X. Google Scholar

[14]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,, Computers & Mathematics with Applications, 2 (1976), 17. doi: 10.1016/0898-1221(76)90003-1. Google Scholar

[15]

R. Glowinski and P. Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM, (1989). doi: 10.1137/1.9781611970838. Google Scholar

[16]

T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. doi: 10.1137/080725891. Google Scholar

[17]

C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods and results,, Journal of Combinatorial Optimization, 8 (2004), 329. doi: 10.1023/B:JOCO.0000038914.26975.9b. Google Scholar

[18]

B. He, L. Liao, D. Han and H. Yang, A new inexact alternating direction method for monotone variational inequalities,, Mathematical Programming, 92 (2002), 103. doi: 10.1007/s101070100280. Google Scholar

[19]

B. He, M. Tao and X. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming,, SIAM Journal on Optimization, 22 (2012), 313. doi: 10.1137/110822347. Google Scholar

[20]

G. Iyengar and W. Kang, Inverse conic programming and applications,, Operations Research Letters, 33 (2005), 319. doi: 10.1016/j.orl.2004.04.007. Google Scholar

[21]

D. Peaceman and H. Rachford, The numerical solution of parabolic elliptic differential equations,, Journal of the Society for Industrial and Applied Mathematics, 3 (1955), 28. doi: 10.1137/0103003. Google Scholar

[22]

M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method,, IMA Journal of Numerical Analysis, 13 (1993), 321. doi: 10.1093/imanum/13.3.321. Google Scholar

[23]

M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem,, SIAM Journal on Optimization, 7 (1997), 26. doi: 10.1137/S1052623494266365. Google Scholar

[24]

R. Rockafellar and R. Wets, Variational Analysis,, Springer-Verlag, (1998). doi: 10.1007/978-3-642-02431-3. Google Scholar

[25]

D. Sun, J. Sun and L. Zhang, The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming,, Mathematical Programming, 114 (2008), 349. doi: 10.1007/s10107-007-0105-9. Google Scholar

[26]

P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,, SIAM Journal on Control and Optimization, 29 (1991), 119. doi: 10.1137/0329006. Google Scholar

[27]

P. Tseng, Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming,, Mathematical Programming, 48 (1990), 249. doi: 10.1007/BF01582258. Google Scholar

[28]

X. Xiao, L. Zhang and J. Zhang, A smoothing Newton method for a type of inverse semi-definite quadratic programming problem,, Journal of Computational and Applied Mathematics, 223 (2009), 485. doi: 10.1016/j.cam.2008.01.028. Google Scholar

[29]

X. Xiao, L. Zhang and J. Zhang, On convergence of augmented Lagrange method for inverse semi-definite quadratic programming problems,, Journal of Industrial and Management Optimization, 5 (2009), 319. doi: 10.3934/jimo.2009.5.319. Google Scholar

[30]

J. Yang and Y. Zhang, Alternating direction algorithms for $l_1$-problems in compressive sensing,, SIAM Journal on Scientific Computing, 33 (2011), 250. doi: 10.1137/090777761. Google Scholar

[31]

J. Zhang and Z. Liu, Calculating some inverse linear programming problems,, Journal of Computational and Applied Mathematics, 72 (1996), 261. doi: 10.1016/0377-0427(95)00277-4. Google Scholar

[32]

J. Zhang and Z. Liu, A further study on inverse linear programming problems,, Journal of Computational and Applied Mathematics, 106 (1999), 345. doi: 10.1016/S0377-0427(99)00080-1. Google Scholar

[33]

J. Zhang, Z. Liu and Z. Ma, Some reverse location problems,, European Journal of Operations Research, 124 (2000), 77. doi: 10.1016/S0377-2217(99)00122-8. Google Scholar

[34]

J. Zhang and Z. Ma, Solution structure of some inverse combinatorial optimization problems,, Journal of Combinatorial Optimization, 3 (1999), 127. doi: 10.1023/A:1009829525096. Google Scholar

[35]

J. Zhang and L. Zhang, An augmented Lagrangian method for a class of inverse quadratic programming problems,, Applied Mathematics and Optimization, 61 (2010), 57. doi: 10.1007/s00245-009-9075-z. Google Scholar

show all references

References:
[1]

M. Afonso, J. Bioucas-Dias and M. Figueiredo, Fast image recovery using variable splitting and constrained optimization,, IEEE Transactions on image processing, 19 (2010), 2345. doi: 10.1109/TIP.2010.2047910. Google Scholar

[2]

R. Ahuja and J. Orlin, Inverse optimization,, Operations Research, 49 (2001), 771. doi: 10.1287/opre.49.5.771.10607. Google Scholar

[3]

R. Ahuja and J. Orlin, Combinatorial algorithms for inverse network flow problems,, Networks, 40 (2002), 181. doi: 10.1002/net.10048. Google Scholar

[4]

J. Barzilai and J. M. Borwein, Two point step size gradient methods,, IMA Journal of Numerical Analysis, 8 (1988), 141. doi: 10.1093/imanum/8.1.141. Google Scholar

[5]

D. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method,, IEEE Transactions on Automatic Control, 21 (1976), 174. doi: 10.1109/TAC.1976.1101194. Google Scholar

[6]

E. Birgin, J. Martínez and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets,, SIAM Journal on Optimization, 10 (2000), 1196. doi: 10.1137/S1052623497330963. Google Scholar

[7]

E. Birgin, J. Martínez and M. Raydan, Spectral projected gradient methods: reviews and perspective,, Available from: , (). Google Scholar

[8]

S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers,, Foundations and Trends in Machine Learning, 3 (2011), 1. doi: 10.1561/2200000016. Google Scholar

[9]

W. Burton and P. Toint, On an instance of the inverse shortest paths problem,, Mathematical Programming, 53 (1992), 45. doi: 10.1007/BF01585693. Google Scholar

[10]

M. Cai, X. Yang and J. Zhang, The complexity analysis of the inverse center location problem,, Journal of Global Optimization, 15 (1999), 213. doi: 10.1023/A:1008360312607. Google Scholar

[11]

Y. Dai and L. Liao, R-linear convergence of the Barzilai and Borwein gradient method,, IMA Journal on Numerical Analysis, 22 (2002), 1. doi: 10.1093/imanum/22.1.1. Google Scholar

[12]

J. Douglas and H. Rachford, On the numerical solution of the heat conduction problem in two and three space variables,, Transactions of the American Mathematical Society, 82 (1956), 421. doi: 10.1090/S0002-9947-1956-0084194-4. Google Scholar

[13]

A. Friedlander, J. M. Martínez, B. Molina and M. Raydan, Gradient method with retards and generalizations,, SIAM Journal on Numerical Analysis, 36 (1999), 275. doi: 10.1137/S003614299427315X. Google Scholar

[14]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,, Computers & Mathematics with Applications, 2 (1976), 17. doi: 10.1016/0898-1221(76)90003-1. Google Scholar

[15]

R. Glowinski and P. Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM, (1989). doi: 10.1137/1.9781611970838. Google Scholar

[16]

T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems,, SIAM Journal on Imaging Sciences, 2 (2009), 323. doi: 10.1137/080725891. Google Scholar

[17]

C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods and results,, Journal of Combinatorial Optimization, 8 (2004), 329. doi: 10.1023/B:JOCO.0000038914.26975.9b. Google Scholar

[18]

B. He, L. Liao, D. Han and H. Yang, A new inexact alternating direction method for monotone variational inequalities,, Mathematical Programming, 92 (2002), 103. doi: 10.1007/s101070100280. Google Scholar

[19]

B. He, M. Tao and X. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming,, SIAM Journal on Optimization, 22 (2012), 313. doi: 10.1137/110822347. Google Scholar

[20]

G. Iyengar and W. Kang, Inverse conic programming and applications,, Operations Research Letters, 33 (2005), 319. doi: 10.1016/j.orl.2004.04.007. Google Scholar

[21]

D. Peaceman and H. Rachford, The numerical solution of parabolic elliptic differential equations,, Journal of the Society for Industrial and Applied Mathematics, 3 (1955), 28. doi: 10.1137/0103003. Google Scholar

[22]

M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method,, IMA Journal of Numerical Analysis, 13 (1993), 321. doi: 10.1093/imanum/13.3.321. Google Scholar

[23]

M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem,, SIAM Journal on Optimization, 7 (1997), 26. doi: 10.1137/S1052623494266365. Google Scholar

[24]

R. Rockafellar and R. Wets, Variational Analysis,, Springer-Verlag, (1998). doi: 10.1007/978-3-642-02431-3. Google Scholar

[25]

D. Sun, J. Sun and L. Zhang, The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming,, Mathematical Programming, 114 (2008), 349. doi: 10.1007/s10107-007-0105-9. Google Scholar

[26]

P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,, SIAM Journal on Control and Optimization, 29 (1991), 119. doi: 10.1137/0329006. Google Scholar

[27]

P. Tseng, Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming,, Mathematical Programming, 48 (1990), 249. doi: 10.1007/BF01582258. Google Scholar

[28]

X. Xiao, L. Zhang and J. Zhang, A smoothing Newton method for a type of inverse semi-definite quadratic programming problem,, Journal of Computational and Applied Mathematics, 223 (2009), 485. doi: 10.1016/j.cam.2008.01.028. Google Scholar

[29]

X. Xiao, L. Zhang and J. Zhang, On convergence of augmented Lagrange method for inverse semi-definite quadratic programming problems,, Journal of Industrial and Management Optimization, 5 (2009), 319. doi: 10.3934/jimo.2009.5.319. Google Scholar

[30]

J. Yang and Y. Zhang, Alternating direction algorithms for $l_1$-problems in compressive sensing,, SIAM Journal on Scientific Computing, 33 (2011), 250. doi: 10.1137/090777761. Google Scholar

[31]

J. Zhang and Z. Liu, Calculating some inverse linear programming problems,, Journal of Computational and Applied Mathematics, 72 (1996), 261. doi: 10.1016/0377-0427(95)00277-4. Google Scholar

[32]

J. Zhang and Z. Liu, A further study on inverse linear programming problems,, Journal of Computational and Applied Mathematics, 106 (1999), 345. doi: 10.1016/S0377-0427(99)00080-1. Google Scholar

[33]

J. Zhang, Z. Liu and Z. Ma, Some reverse location problems,, European Journal of Operations Research, 124 (2000), 77. doi: 10.1016/S0377-2217(99)00122-8. Google Scholar

[34]

J. Zhang and Z. Ma, Solution structure of some inverse combinatorial optimization problems,, Journal of Combinatorial Optimization, 3 (1999), 127. doi: 10.1023/A:1009829525096. Google Scholar

[35]

J. Zhang and L. Zhang, An augmented Lagrangian method for a class of inverse quadratic programming problems,, Applied Mathematics and Optimization, 61 (2010), 57. doi: 10.1007/s00245-009-9075-z. Google Scholar

[1]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[2]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[3]

Wei Huang, Ka-Fai Cedric Yiu, Henry Y. K. Lau. Semi-definite programming based approaches for real-time tractor localization in port container terminals. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 665-680. doi: 10.3934/naco.2013.3.665

[4]

Yi Xu, Jinjie Liu, Liqun Qi. A new class of positive semi-definite tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2018186

[5]

Stephane Chretien, Paul Clarkson. A fast algorithm for the semi-definite relaxation of the state estimation problem in power grids. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2018161

[6]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[7]

Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247

[8]

Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial & Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078

[9]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[10]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[11]

Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial & Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067

[12]

Zhi Guo Feng, Kok Lay Teo, Volker Rehbock. A smoothing approach for semi-infinite programming with projected Newton-type algorithm. Journal of Industrial & Management Optimization, 2009, 5 (1) : 141-151. doi: 10.3934/jimo.2009.5.141

[13]

Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial & Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037

[14]

Russell E. Warren, Stanley J. Osher. Hyperspectral unmixing by the alternating direction method of multipliers. Inverse Problems & Imaging, 2015, 9 (3) : 917-933. doi: 10.3934/ipi.2015.9.917

[15]

Rouhollah Tavakoli, Hongchao Zhang. A nonmonotone spectral projected gradient method for large-scale topology optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 395-412. doi: 10.3934/naco.2012.2.395

[16]

Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349

[17]

Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117

[18]

Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543

[19]

Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019075

[20]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]