• Previous Article
    A criterion for an approximation global optimal solution based on the filled functions
  • JIMO Home
  • This Issue
  • Next Article
    A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain
January  2016, 12(1): 357-373. doi: 10.3934/jimo.2016.12.357

Fuzzy quadratic surface support vector machine based on fisher discriminant analysis

1. 

School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China

2. 

Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695-7906

3. 

Department of Mathematics, Shanghai University, Shanghai 200444

4. 

School of Management, University of Chinese Academy of Sciences, Beijing, 100190

Received  August 2014 Revised  January 2015 Published  April 2015

In this paper, using the concept of Fisher discriminant analysis and a new fuzzy membership function, a kernel-free fuzzy quadratic surface support vector machine model is proposed for binary classification. The membership function is specially designed to consider not only the ``quadratic-margin distance'' between a training point and its related ``quadratic center surface'' but also the affinity among training points. A decomposition algorithm is designed to solve the proposed model. Computational results on artificial and four real-world classifying data sets indicate that the proposed model outperforms fuzzy support vector machine models with Gaussian or Quadratic kernel and soft quadratic surface support vector machine model, especially, when the data sets contain a large amount of outliers and noises.
Citation: Jian Luo, Shu-Cherng Fang, Yanqin Bai, Zhibin Deng. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. Journal of Industrial & Management Optimization, 2016, 12 (1) : 357-373. doi: 10.3934/jimo.2016.12.357
References:
[1]

L. T. H. An and P. D. Tao, A continuous approach for the concave cost supply problem via DC programming and DCA,, Discrete Applied Mathematics, 156 (2008), 325.  doi: 10.1016/j.dam.2007.03.024.  Google Scholar

[2]

W. An and M. Liang, Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises,, Neurocomputing, 110 (2013), 101.  doi: 10.1016/j.neucom.2012.11.023.  Google Scholar

[3]

K. Bache and M. Lichman, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science,, 2013. Available from: , ().   Google Scholar

[4]

M. Bicego and M. A. Figueiredo, Soft clustering using weighted one-class support vector machines,, Pattern Recognition, 42 (2009), 27.  doi: 10.1016/j.patcog.2008.07.004.  Google Scholar

[5]

J. P. Brooks, Support vector machines with the ramp loss and the hard margin loss,, Operations Research, 59 (2011), 467.  doi: 10.1287/opre.1100.0854.  Google Scholar

[6]

H.-G. Chew and C.-C. Lim, On regularisation parameter transformation of support vector machines,, Journal of Industrial and Management Optimization, 5 (2009), 403.  doi: 10.3934/jimo.2009.5.403.  Google Scholar

[7]

I. Dagher, Quadratic kernel-free non-linear support vector machine,, Journal of Global Optimization, 41 (2008), 15.  doi: 10.1007/s10898-007-9162-0.  Google Scholar

[8]

R. A. Fisher, The use of multiple measurements in taxonomic problems,, Annals of Human Genetics, 7 (1936), 179.  doi: 10.1111/j.1469-1809.1936.tb02137.x.  Google Scholar

[9]

X. Jiang, Y. Zhang and J. C. Lv, Fuzzy SVM with a new fuzzy membership function,, Neural Computing and Applications, 15 (2006), 268.  doi: 10.1007/s00521-006-0028-z.  Google Scholar

[10]

T. Joachims, Text categorization with support vector machines: learning with many relevant features,, Machine Learning: ECML-98, 1398 (1998), 137.  doi: 10.1007/BFb0026683.  Google Scholar

[11]

S. B. Kazmi, Q. Ain and M. A. Jaffar, Wavelets-based facial expression recognition using a bank of support vector machines,, Soft Computing, 16 (2012), 369.  doi: 10.1007/s00500-011-0721-4.  Google Scholar

[12]

C. F. Lin and S. D. Wang, Fuzzy support vector machines,, IEEE Transactions on Neural Networks, 13 (2002), 464.   Google Scholar

[13]

Y. Liu and M. Yuan, Reinforced multicategory support vector machines,, Journal of Computational and Graphical Statistics, 20 (2011), 901.  doi: 10.1198/jcgs.2010.09206.  Google Scholar

[14]

J. Luo, Z. Deng, D. Bulatov, J. E. Lavery and S.-C. Fang, Comparison of an $l_1$-regression-based and a RANSAC-based planar segmentation procedure for urban terrain data with many outliers,, Image and Signal Processing for Remote Sensing XIX, 8892 (2013).  doi: 10.1117/12.2028627.  Google Scholar

[15]

J. Luo, S.-C. Fang, Z. Deng and X. Guo, Quadratic Surface Support Vector Machine for Binary Classification,, Submitted to Neurocomputing, (2014).   Google Scholar

[16]

K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.  doi: 10.3934/jimo.2005.1.465.  Google Scholar

[17]

F. E. H. Tay and L. Cao, Application of support vector machines in financial time series forecasting,, Omega, 29 (2001), 309.  doi: 10.1016/S0305-0483(01)00026-3.  Google Scholar

[18]

V. N. Vapnik, The Nature of Statistical Learning Theory,, $2^{nd}$ edition, (2000).  doi: 10.1007/978-1-4757-3264-1.  Google Scholar

[19]

C. Wu, C. Li and Q. Long, A DC programming approach for sensor network localization with uncertainties in archor positions,, Journal of Industrial and Management Optimization, 10 (2014), 817.  doi: 10.3934/jimo.2014.10.817.  Google Scholar

[20]

Y. Wu and Y. Liu, Robust truncated hinge loss support vector machines,, Journal of the American Statistical Association, 102 (2007), 974.  doi: 10.1198/016214507000000617.  Google Scholar

[21]

X. Zhang, X. Xiao and G. Xu, Fuzzy support vector machine based on affinity among samples,, Journal of Software, 17 (2006), 951.  doi: 10.1360/jos170951.  Google Scholar

[22]

G. Zhang, S. Wang, Y. Wang and W. Liu, LS-SVM approximate solution for affine nonlinear systems with partially unknown systems,, Journal of Industrial and Management Optimization, 10 (2014), 621.  doi: 10.3934/jimo.2014.10.621.  Google Scholar

show all references

References:
[1]

L. T. H. An and P. D. Tao, A continuous approach for the concave cost supply problem via DC programming and DCA,, Discrete Applied Mathematics, 156 (2008), 325.  doi: 10.1016/j.dam.2007.03.024.  Google Scholar

[2]

W. An and M. Liang, Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises,, Neurocomputing, 110 (2013), 101.  doi: 10.1016/j.neucom.2012.11.023.  Google Scholar

[3]

K. Bache and M. Lichman, UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science,, 2013. Available from: , ().   Google Scholar

[4]

M. Bicego and M. A. Figueiredo, Soft clustering using weighted one-class support vector machines,, Pattern Recognition, 42 (2009), 27.  doi: 10.1016/j.patcog.2008.07.004.  Google Scholar

[5]

J. P. Brooks, Support vector machines with the ramp loss and the hard margin loss,, Operations Research, 59 (2011), 467.  doi: 10.1287/opre.1100.0854.  Google Scholar

[6]

H.-G. Chew and C.-C. Lim, On regularisation parameter transformation of support vector machines,, Journal of Industrial and Management Optimization, 5 (2009), 403.  doi: 10.3934/jimo.2009.5.403.  Google Scholar

[7]

I. Dagher, Quadratic kernel-free non-linear support vector machine,, Journal of Global Optimization, 41 (2008), 15.  doi: 10.1007/s10898-007-9162-0.  Google Scholar

[8]

R. A. Fisher, The use of multiple measurements in taxonomic problems,, Annals of Human Genetics, 7 (1936), 179.  doi: 10.1111/j.1469-1809.1936.tb02137.x.  Google Scholar

[9]

X. Jiang, Y. Zhang and J. C. Lv, Fuzzy SVM with a new fuzzy membership function,, Neural Computing and Applications, 15 (2006), 268.  doi: 10.1007/s00521-006-0028-z.  Google Scholar

[10]

T. Joachims, Text categorization with support vector machines: learning with many relevant features,, Machine Learning: ECML-98, 1398 (1998), 137.  doi: 10.1007/BFb0026683.  Google Scholar

[11]

S. B. Kazmi, Q. Ain and M. A. Jaffar, Wavelets-based facial expression recognition using a bank of support vector machines,, Soft Computing, 16 (2012), 369.  doi: 10.1007/s00500-011-0721-4.  Google Scholar

[12]

C. F. Lin and S. D. Wang, Fuzzy support vector machines,, IEEE Transactions on Neural Networks, 13 (2002), 464.   Google Scholar

[13]

Y. Liu and M. Yuan, Reinforced multicategory support vector machines,, Journal of Computational and Graphical Statistics, 20 (2011), 901.  doi: 10.1198/jcgs.2010.09206.  Google Scholar

[14]

J. Luo, Z. Deng, D. Bulatov, J. E. Lavery and S.-C. Fang, Comparison of an $l_1$-regression-based and a RANSAC-based planar segmentation procedure for urban terrain data with many outliers,, Image and Signal Processing for Remote Sensing XIX, 8892 (2013).  doi: 10.1117/12.2028627.  Google Scholar

[15]

J. Luo, S.-C. Fang, Z. Deng and X. Guo, Quadratic Surface Support Vector Machine for Binary Classification,, Submitted to Neurocomputing, (2014).   Google Scholar

[16]

K. Schittkowski, Optimal parameter selection in support vector machines,, Journal of Industrial and Management Optimization, 1 (2005), 465.  doi: 10.3934/jimo.2005.1.465.  Google Scholar

[17]

F. E. H. Tay and L. Cao, Application of support vector machines in financial time series forecasting,, Omega, 29 (2001), 309.  doi: 10.1016/S0305-0483(01)00026-3.  Google Scholar

[18]

V. N. Vapnik, The Nature of Statistical Learning Theory,, $2^{nd}$ edition, (2000).  doi: 10.1007/978-1-4757-3264-1.  Google Scholar

[19]

C. Wu, C. Li and Q. Long, A DC programming approach for sensor network localization with uncertainties in archor positions,, Journal of Industrial and Management Optimization, 10 (2014), 817.  doi: 10.3934/jimo.2014.10.817.  Google Scholar

[20]

Y. Wu and Y. Liu, Robust truncated hinge loss support vector machines,, Journal of the American Statistical Association, 102 (2007), 974.  doi: 10.1198/016214507000000617.  Google Scholar

[21]

X. Zhang, X. Xiao and G. Xu, Fuzzy support vector machine based on affinity among samples,, Journal of Software, 17 (2006), 951.  doi: 10.1360/jos170951.  Google Scholar

[22]

G. Zhang, S. Wang, Y. Wang and W. Liu, LS-SVM approximate solution for affine nonlinear systems with partially unknown systems,, Journal of Industrial and Management Optimization, 10 (2014), 621.  doi: 10.3934/jimo.2014.10.621.  Google Scholar

[1]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[4]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[5]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[6]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[9]

Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020174

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[12]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[13]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[14]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[15]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[16]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[17]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[20]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]