• Previous Article
    On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems
  • JIMO Home
  • This Issue
  • Next Article
    Fuzzy quadratic surface support vector machine based on fisher discriminant analysis
January  2016, 12(1): 375-387. doi: 10.3934/jimo.2016.12.375

A criterion for an approximation global optimal solution based on the filled functions

1. 

College of Science, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072

3. 

Industrial Engineering Department, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, China

Received  December 2013 Revised  February 2015 Published  April 2015

In this paper, a new definition of the filled function is given. Based on the new definition, a new class of filled functions is constructed, and the properties of the new filled functions are analysed and discussed. Moreover, according to the new class of filled functions, a criterion is given to decide whether the point we have obtained is an approximate global optimal solution. Finally, a global optimization algorithm based on the new class of filled functions is presented. The implementation of the algorithm on several test problems is reported with numerical results.
Citation: Liuyang Yuan, Zhongping Wan, Qiuhua Tang. A criterion for an approximation global optimal solution based on the filled functions. Journal of Industrial & Management Optimization, 2016, 12 (1) : 375-387. doi: 10.3934/jimo.2016.12.375
References:
[1]

S. H. Chew and Q. Zheng, Integral Global Optimization, Volume 298 of Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1988). doi: 10.1007/978-3-642-46623-6. Google Scholar

[2]

L. C. W. Dixon, J. Gomulka and S. E. Herson, Reflection on global optimization problems,, in Optimization in Action (Dixon, (1976), 398. Google Scholar

[3]

R. P. Ge, A filled function method for finding a global minimizer of a function of several variables,, Mathematical Programming, 46 (1990), 191. doi: 10.1007/BF01585737. Google Scholar

[4]

R. P. Ge and Y. F. Qin, A class of filled functions for finding a global minimizer of a function of several variables,, Journal of Optimization Theory and Applications, 54 (1987), 241. doi: 10.1007/BF00939433. Google Scholar

[5]

R. P. Ge and Y. F. Qin, The globally convexized filled functions for global optimization,, Applied Mathematics and Computation, 35 (1990), 131. doi: 10.1016/0096-3003(90)90114-I. Google Scholar

[6]

R. Horst, P. M. Pardalos and N. V. Thoai, Introduction to Global Optimization,, $2^{nd}$ edition, (2001). Google Scholar

[7]

R. Horst, N. V. Thoai and H. Tuy, Outer approximation by polyhedral convex sets,, Operations Research Spektrum, 9 (1987), 153. doi: 10.1007/BF01721096. Google Scholar

[8]

A. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions,, SIAM Journal on Scientific and Statistical Computing, 6 (1986), 15. doi: 10.1137/0906002. Google Scholar

[9]

X. Liu, Finding global minima with a computable filled function,, Journal of Global Optimization, 19 (2001), 151. doi: 10.1023/A:1008330632677. Google Scholar

[10]

H. W. Lin, Y. P. Wang, L. Fan and Y. L. Gao, A new discrete filled function method for finding global minimizer of the integer programming,, Applied Mathematics and Computation, 219 (2013), 4371. doi: 10.1016/j.amc.2012.10.035. Google Scholar

[11]

H. W. Lin, Y. L. Gao and Y. P. Wang, A continuously differentiable filled function method for global optimization,, Numerical Algorithms, 66 (2014), 511. doi: 10.1007/s11075-013-9746-3. Google Scholar

[12]

R. E. Moore, Enterbal Analysis,, Prentice-Hall, (1966). Google Scholar

[13]

P. M. Pardalos, H. E. Romeijn and H. Tuy, Recent development and trends in global optimization,, Journal of Computational and Applied Mathematics, 124 (2000), 209. doi: 10.1016/S0377-0427(00)00425-8. Google Scholar

[14]

Z. Wan, L. Y. Yuan and J. W. Chen, A filled function method for nonlinear systems of equalities and inequalities,, Computational & Applied Mathematics, 31 (2012), 391. doi: 10.1590/S1807-03022012000200010. Google Scholar

[15]

W. X. Wang, Y. L. Shang, L. S. Zhang and Y. Zhang, Global minimization of non-smooth unconstrained problems with filled function,, Optimization Letters, 7 (2013), 435. doi: 10.1007/s11590-011-0427-7. Google Scholar

[16]

F. Wei and Y. P. Wang, A new filled function method with one parameter for global optimization,, Mathematical Problems in Engineering, 2013 (2013). Google Scholar

[17]

F. Wei, Y. P. Wang and H. W. Lin, (2014), A new filled function method with two parameters for global optimization,, Journal of Optimization Theory and Applications, 163 (2014), 510. doi: 10.1007/s10957-013-0515-1. Google Scholar

[18]

Y. J. Yang and Y. L. Shang, A new filled function method for unconstrained global optimization,, Applied Mathematicas Computation, 173 (2006), 501. doi: 10.1016/j.amc.2005.04.046. Google Scholar

[19]

Y. J. Yang, Z. Y. Wu and F. S. Bai, A filled function method for constrained nonlinear integer programming,, Journal of Industrial and Management Optimization, 4 (2008), 353. doi: 10.3934/jimo.2008.4.353. Google Scholar

[20]

L. Y. Yuan, Z. Wan, J. J. Zhang and B. Sun, A filled function method for solving nonlinear complementarity problems,, Journal of Industrial and Management Optimization, 5 (2009), 911. doi: 10.3934/jimo.2009.5.911. Google Scholar

[21]

L. S. Zhang, C. NG, D. Li and W. Tian, A new filled function method for global optimization,, Journal of Global Optimization, 28 (2004), 17. doi: 10.1023/B:JOGO.0000006653.60256.f6. Google Scholar

[22]

Q. Zheng and D. Zhuang, Integral global minimization: Algorithms, implementations and numerical tests,, Journal of Global Optimization, 7 (1995), 421. doi: 10.1007/BF01099651. Google Scholar

show all references

References:
[1]

S. H. Chew and Q. Zheng, Integral Global Optimization, Volume 298 of Lecture Notes in Economics and Mathematical Systems,, Springer-Verlag, (1988). doi: 10.1007/978-3-642-46623-6. Google Scholar

[2]

L. C. W. Dixon, J. Gomulka and S. E. Herson, Reflection on global optimization problems,, in Optimization in Action (Dixon, (1976), 398. Google Scholar

[3]

R. P. Ge, A filled function method for finding a global minimizer of a function of several variables,, Mathematical Programming, 46 (1990), 191. doi: 10.1007/BF01585737. Google Scholar

[4]

R. P. Ge and Y. F. Qin, A class of filled functions for finding a global minimizer of a function of several variables,, Journal of Optimization Theory and Applications, 54 (1987), 241. doi: 10.1007/BF00939433. Google Scholar

[5]

R. P. Ge and Y. F. Qin, The globally convexized filled functions for global optimization,, Applied Mathematics and Computation, 35 (1990), 131. doi: 10.1016/0096-3003(90)90114-I. Google Scholar

[6]

R. Horst, P. M. Pardalos and N. V. Thoai, Introduction to Global Optimization,, $2^{nd}$ edition, (2001). Google Scholar

[7]

R. Horst, N. V. Thoai and H. Tuy, Outer approximation by polyhedral convex sets,, Operations Research Spektrum, 9 (1987), 153. doi: 10.1007/BF01721096. Google Scholar

[8]

A. Levy and A. Montalvo, The tunneling algorithm for the global minimization of functions,, SIAM Journal on Scientific and Statistical Computing, 6 (1986), 15. doi: 10.1137/0906002. Google Scholar

[9]

X. Liu, Finding global minima with a computable filled function,, Journal of Global Optimization, 19 (2001), 151. doi: 10.1023/A:1008330632677. Google Scholar

[10]

H. W. Lin, Y. P. Wang, L. Fan and Y. L. Gao, A new discrete filled function method for finding global minimizer of the integer programming,, Applied Mathematics and Computation, 219 (2013), 4371. doi: 10.1016/j.amc.2012.10.035. Google Scholar

[11]

H. W. Lin, Y. L. Gao and Y. P. Wang, A continuously differentiable filled function method for global optimization,, Numerical Algorithms, 66 (2014), 511. doi: 10.1007/s11075-013-9746-3. Google Scholar

[12]

R. E. Moore, Enterbal Analysis,, Prentice-Hall, (1966). Google Scholar

[13]

P. M. Pardalos, H. E. Romeijn and H. Tuy, Recent development and trends in global optimization,, Journal of Computational and Applied Mathematics, 124 (2000), 209. doi: 10.1016/S0377-0427(00)00425-8. Google Scholar

[14]

Z. Wan, L. Y. Yuan and J. W. Chen, A filled function method for nonlinear systems of equalities and inequalities,, Computational & Applied Mathematics, 31 (2012), 391. doi: 10.1590/S1807-03022012000200010. Google Scholar

[15]

W. X. Wang, Y. L. Shang, L. S. Zhang and Y. Zhang, Global minimization of non-smooth unconstrained problems with filled function,, Optimization Letters, 7 (2013), 435. doi: 10.1007/s11590-011-0427-7. Google Scholar

[16]

F. Wei and Y. P. Wang, A new filled function method with one parameter for global optimization,, Mathematical Problems in Engineering, 2013 (2013). Google Scholar

[17]

F. Wei, Y. P. Wang and H. W. Lin, (2014), A new filled function method with two parameters for global optimization,, Journal of Optimization Theory and Applications, 163 (2014), 510. doi: 10.1007/s10957-013-0515-1. Google Scholar

[18]

Y. J. Yang and Y. L. Shang, A new filled function method for unconstrained global optimization,, Applied Mathematicas Computation, 173 (2006), 501. doi: 10.1016/j.amc.2005.04.046. Google Scholar

[19]

Y. J. Yang, Z. Y. Wu and F. S. Bai, A filled function method for constrained nonlinear integer programming,, Journal of Industrial and Management Optimization, 4 (2008), 353. doi: 10.3934/jimo.2008.4.353. Google Scholar

[20]

L. Y. Yuan, Z. Wan, J. J. Zhang and B. Sun, A filled function method for solving nonlinear complementarity problems,, Journal of Industrial and Management Optimization, 5 (2009), 911. doi: 10.3934/jimo.2009.5.911. Google Scholar

[21]

L. S. Zhang, C. NG, D. Li and W. Tian, A new filled function method for global optimization,, Journal of Global Optimization, 28 (2004), 17. doi: 10.1023/B:JOGO.0000006653.60256.f6. Google Scholar

[22]

Q. Zheng and D. Zhuang, Integral global minimization: Algorithms, implementations and numerical tests,, Journal of Global Optimization, 7 (1995), 421. doi: 10.1007/BF01099651. Google Scholar

[1]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[2]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[3]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[4]

Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575

[5]

J. W. Neuberger. How to distinguish a local semigroup from a global semigroup. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5293-5303. doi: 10.3934/dcds.2013.33.5293

[6]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[7]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[8]

Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73

[9]

Giancarlo Bigi. Componentwise versus global approaches to nonsmooth multiobjective optimization. Journal of Industrial & Management Optimization, 2005, 1 (1) : 21-32. doi: 10.3934/jimo.2005.1.21

[10]

Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial & Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103

[11]

Bun Theang Ong, Masao Fukushima. Global optimization via differential evolution with automatic termination. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 57-67. doi: 10.3934/naco.2012.2.57

[12]

Dmitri E. Kvasov, Yaroslav D. Sergeyev. Univariate geometric Lipschitz global optimization algorithms. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 69-90. doi: 10.3934/naco.2012.2.69

[13]

Ahmet Sahiner, Nurullah Yilmaz, Gulden Kapusuz. A novel modeling and smoothing technique in global optimization. Journal of Industrial & Management Optimization, 2019, 15 (1) : 113-130. doi: 10.3934/jimo.2018035

[14]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[15]

T. L. Mason, C. Emelle, J. van Berkel, A. M. Bagirov, F. Kampas, J. D. Pintér. Integrated production system optimization using global optimization techniques. Journal of Industrial & Management Optimization, 2007, 3 (2) : 257-277. doi: 10.3934/jimo.2007.3.257

[16]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[17]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[18]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[19]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[20]

Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure & Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]