-
Previous Article
$p$th Moment absolute exponential stability of stochastic control system with Markovian switching
- JIMO Home
- This Issue
-
Next Article
A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse
Location and capacity design of congested intermediate facilities in networks
1. | School of Management, South-Central University for Nationalities, Wuhan, 430074, China |
2. | Department of Automation, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China |
References:
[1] |
R. Aboolian, O. Berman and D. Krass, Profit maximizing distributed service system design with congestion and elastic demand, Transportation Science, 46 (2012), 247-261.
doi: 10.1287/trsc.1110.0392. |
[2] |
S.R. Agnihothri, S. Narasimhan and H. Pirkul, An assignment problem with queueing time cost, Naval Research Logistics, 37 (1990), 231-244.
doi: 10.1002/1520-6750(199004)37:2<231::AID-NAV3220370204>3.0.CO;2-N. |
[3] |
M. Armony, E. Plambeck and S. Seshadri, Sensitivity of optimal capacity to customer impatience in an unobservable m/m/s queue (why you shouldn't shout at the dmv), Manufacturing & Service Operations Management, 11 (2009), 19-32.
doi: 10.1287/msom.1070.0194. |
[4] |
O. Berman and Z. Drezner, Location of congested capacitated facilities with distance-sensitive demand, IIE Transactions, 38 (2006), 213-221.
doi: 10.1080/07408170500288190. |
[5] |
O. Berman and Z. Drezner, The multiple server location problem, Journal of the Operational Research Society, 58 (2006), 91-99.
doi: 10.1057/palgrave.jors.2602126. |
[6] |
M. L. Brandeau and S. S. Chiu, A center location problem with congestion, Annals of operations research, 40 (1992), 17-32.
doi: 10.1007/BF02060468. |
[7] |
M. L. F. Cheong, R. Bhatnagar and S. C. Graves, Logistics network design with supplier consolidation hubs and multiple shipment options, Journal of Industrial and Management Optimization, 3 (2007), 51-69.
doi: 10.3934/jimo.2007.3.51. |
[8] |
S. M. Choi, X. Huang and W. K. Ching, Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment, Journal of Industrial and Management Optimization, 8 (2012), 299-323.
doi: 10.3934/jimo.2012.8.299. |
[9] |
M. S. Daskin, C. R. Coullard and Z.-J. M. Shen, A maximum expected covering location model: formulation, properties and heuristic solution, Transportation Science, 17 (1983), 48-70.
doi: 10.1287/trsc.17.1.48. |
[10] |
M. S. Daskin, C. R. Coullard and Z.-J. M. Shen, An inventory-location model: Formulation, solution algorithm and computational results, Annals of Operations Research, 110 (2002), 83-106.
doi: 10.1023/A:1020763400324. |
[11] |
M. S. Daskin, Network and Discrete Location: Models, Algorithms, and Applications, John Wiley & Sons, 2011.
doi: 10.1002/9781118032343. |
[12] |
S. Elhedhli and H. Wu, A lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion, INFORMS Journal on Computing, 22 (2010), 282-296.
doi: 10.1287/ijoc.1090.0335. |
[13] |
A. F. Gabor and J. Van Ommeren, An approximation algorithm for a facility location problem with stochastic demands and inventories, Operations research letters, 34 (2006), 257-263.
doi: 10.1016/j.orl.2005.04.009. |
[14] |
R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems, Kluwer Academic Publishers, 2002.
doi: 10.1007/978-1-4615-0359-0. |
[15] |
D. Hu, C. Yang and J. Yang, Budget constrained flow interception location model for congested systems, Journal of Systems Engineering and Electronics, 20 (2009), 1255-1262. |
[16] |
S. Huang, R. Batta and R. Nagi, Distribution network design: Selection and sizing of congested connections, Naval Research Logistics, 52 (2005), 701-712.
doi: 10.1002/nav.20106. |
[17] |
V. Marianov and D. Serra, Probabilistic, maximal covering location-allocation models for congested systems, Journal of Regional Science, 38 (1998), 401-424. |
[18] |
S. H. R. Pasandideh, S. T. A. Niaki and V. Hajipour, A multi-objective facility location model with batch arrivals: two parameter-tuned meta-heuristic algorithms, Journal of Intelligent Manufacturing, 24 (2013), 331-348. |
[19] |
S. H. A. Rahmati, A. Ahmadi, M. Sharifi and A. Chambari, A multi-objective model for Facility Location-allocation Problem with immobile servers within queuing framework, Computers and Industrial Engineering, 74 (2014), 1-10.
doi: 10.1016/j.cie.2014.04.018. |
[20] |
H. Shavandi and H. Mahlooji, A fuzzy queuing location model with a genetic algorithm for congested systems, Applied mathematics and computation, 181 (2006), 440-456.
doi: 10.1016/j.amc.2005.12.058. |
[21] |
Q. Wang, R. Batta and C. M. Rump, Algorithms for a facility location problem with stochastic customer demand and immobile servers, Annals of Operations Research, 111 (2002), 17-34.
doi: 10.1023/A:1020961732667. |
[22] |
Q. Wang, R. Batta and C. M. Rump, Facility location models for immobile servers with stochastic demand, Naval Research Logistics, 51 (2004), 137-152.
doi: 10.1002/nav.10110. |
[23] |
L. Zhang and G. Rushton, Optimizing the size and locations of facilities in competitive multi-site service systems, Computers & Operations Research, 35 (2008), 327-338.
doi: 10.1016/j.cor.2006.03.002. |
show all references
References:
[1] |
R. Aboolian, O. Berman and D. Krass, Profit maximizing distributed service system design with congestion and elastic demand, Transportation Science, 46 (2012), 247-261.
doi: 10.1287/trsc.1110.0392. |
[2] |
S.R. Agnihothri, S. Narasimhan and H. Pirkul, An assignment problem with queueing time cost, Naval Research Logistics, 37 (1990), 231-244.
doi: 10.1002/1520-6750(199004)37:2<231::AID-NAV3220370204>3.0.CO;2-N. |
[3] |
M. Armony, E. Plambeck and S. Seshadri, Sensitivity of optimal capacity to customer impatience in an unobservable m/m/s queue (why you shouldn't shout at the dmv), Manufacturing & Service Operations Management, 11 (2009), 19-32.
doi: 10.1287/msom.1070.0194. |
[4] |
O. Berman and Z. Drezner, Location of congested capacitated facilities with distance-sensitive demand, IIE Transactions, 38 (2006), 213-221.
doi: 10.1080/07408170500288190. |
[5] |
O. Berman and Z. Drezner, The multiple server location problem, Journal of the Operational Research Society, 58 (2006), 91-99.
doi: 10.1057/palgrave.jors.2602126. |
[6] |
M. L. Brandeau and S. S. Chiu, A center location problem with congestion, Annals of operations research, 40 (1992), 17-32.
doi: 10.1007/BF02060468. |
[7] |
M. L. F. Cheong, R. Bhatnagar and S. C. Graves, Logistics network design with supplier consolidation hubs and multiple shipment options, Journal of Industrial and Management Optimization, 3 (2007), 51-69.
doi: 10.3934/jimo.2007.3.51. |
[8] |
S. M. Choi, X. Huang and W. K. Ching, Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment, Journal of Industrial and Management Optimization, 8 (2012), 299-323.
doi: 10.3934/jimo.2012.8.299. |
[9] |
M. S. Daskin, C. R. Coullard and Z.-J. M. Shen, A maximum expected covering location model: formulation, properties and heuristic solution, Transportation Science, 17 (1983), 48-70.
doi: 10.1287/trsc.17.1.48. |
[10] |
M. S. Daskin, C. R. Coullard and Z.-J. M. Shen, An inventory-location model: Formulation, solution algorithm and computational results, Annals of Operations Research, 110 (2002), 83-106.
doi: 10.1023/A:1020763400324. |
[11] |
M. S. Daskin, Network and Discrete Location: Models, Algorithms, and Applications, John Wiley & Sons, 2011.
doi: 10.1002/9781118032343. |
[12] |
S. Elhedhli and H. Wu, A lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion, INFORMS Journal on Computing, 22 (2010), 282-296.
doi: 10.1287/ijoc.1090.0335. |
[13] |
A. F. Gabor and J. Van Ommeren, An approximation algorithm for a facility location problem with stochastic demands and inventories, Operations research letters, 34 (2006), 257-263.
doi: 10.1016/j.orl.2005.04.009. |
[14] |
R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems, Kluwer Academic Publishers, 2002.
doi: 10.1007/978-1-4615-0359-0. |
[15] |
D. Hu, C. Yang and J. Yang, Budget constrained flow interception location model for congested systems, Journal of Systems Engineering and Electronics, 20 (2009), 1255-1262. |
[16] |
S. Huang, R. Batta and R. Nagi, Distribution network design: Selection and sizing of congested connections, Naval Research Logistics, 52 (2005), 701-712.
doi: 10.1002/nav.20106. |
[17] |
V. Marianov and D. Serra, Probabilistic, maximal covering location-allocation models for congested systems, Journal of Regional Science, 38 (1998), 401-424. |
[18] |
S. H. R. Pasandideh, S. T. A. Niaki and V. Hajipour, A multi-objective facility location model with batch arrivals: two parameter-tuned meta-heuristic algorithms, Journal of Intelligent Manufacturing, 24 (2013), 331-348. |
[19] |
S. H. A. Rahmati, A. Ahmadi, M. Sharifi and A. Chambari, A multi-objective model for Facility Location-allocation Problem with immobile servers within queuing framework, Computers and Industrial Engineering, 74 (2014), 1-10.
doi: 10.1016/j.cie.2014.04.018. |
[20] |
H. Shavandi and H. Mahlooji, A fuzzy queuing location model with a genetic algorithm for congested systems, Applied mathematics and computation, 181 (2006), 440-456.
doi: 10.1016/j.amc.2005.12.058. |
[21] |
Q. Wang, R. Batta and C. M. Rump, Algorithms for a facility location problem with stochastic customer demand and immobile servers, Annals of Operations Research, 111 (2002), 17-34.
doi: 10.1023/A:1020961732667. |
[22] |
Q. Wang, R. Batta and C. M. Rump, Facility location models for immobile servers with stochastic demand, Naval Research Logistics, 51 (2004), 137-152.
doi: 10.1002/nav.10110. |
[23] |
L. Zhang and G. Rushton, Optimizing the size and locations of facilities in competitive multi-site service systems, Computers & Operations Research, 35 (2008), 327-338.
doi: 10.1016/j.cor.2006.03.002. |
[1] |
Hongzhi Lin, Min Xu, Chi Xie. Location and capacity planning for preventive healthcare facilities with congestion effects. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022076 |
[2] |
Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure and Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243 |
[3] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[4] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[5] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1145-1160. doi: 10.3934/jimo.2021013 |
[6] |
Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094 |
[7] |
Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163 |
[8] |
Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653 |
[9] |
Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058 |
[10] |
Chunrong Chen, T. C. Edwin Cheng, Shengji Li, Xiaoqi Yang. Nonlinear augmented Lagrangian for nonconvex multiobjective optimization. Journal of Industrial and Management Optimization, 2011, 7 (1) : 157-174. doi: 10.3934/jimo.2011.7.157 |
[11] |
Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial and Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629 |
[12] |
Adriano Festa, Simone Göttlich, Marion Pfirsching. A model for a network of conveyor belts with discontinuous speed and capacity. Networks and Heterogeneous Media, 2019, 14 (2) : 389-410. doi: 10.3934/nhm.2019016 |
[13] |
Qing Yang, Shiji Song, Cheng Wu. Inventory policies for a partially observed supply capacity model. Journal of Industrial and Management Optimization, 2013, 9 (1) : 13-30. doi: 10.3934/jimo.2013.9.13 |
[14] |
Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215 |
[15] |
Chunrong Chen. A unified nonlinear augmented Lagrangian approach for nonconvex vector optimization. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 495-508. doi: 10.3934/naco.2011.1.495 |
[16] |
Xueyong Wang, Yiju Wang, Gang Wang. An accelerated augmented Lagrangian method for multi-criteria optimization problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 1-9. doi: 10.3934/jimo.2018136 |
[17] |
Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks and Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127 |
[18] |
Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375 |
[19] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial and Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[20] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]