January  2016, 12(1): 45-71. doi: 10.3934/jimo.2016.12.45

Discount-offering and demand-rejection decisions for substitutable products with different profit levels

1. 

School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China, China

Received  January 2013 Revised  November 2014 Published  April 2015

This study focuses on discount-offering and demand-rejection decisions for a retailer selling substitutable products. Those products are assumed to be generated different unit net revenues. We first consider a basic model with only two substitutable products and formulate the retailer's objective function by means of dynamic programming model. We show that the retailer can employ simple offering- and rejection-decision rules that are derived in accordance with the stocking quantities of the products. Moreover, it is identified that the retailer's offering decision can also be made according to the number of remaining selling periods. We conduct some numerical examples to testify how those decision rules to vary with regard to different parameters. Further, we extend the basic model to the case with three partially substitutable products. It is shown that the simple offering-decision rules are existed only under some restrictive conditions, and especially, it is difficult to analytically develop any simple rejection-decision rules.
Citation: Taofeng Ye, Shaohui Ma. Discount-offering and demand-rejection decisions for substitutable products with different profit levels. Journal of Industrial & Management Optimization, 2016, 12 (1) : 45-71. doi: 10.3934/jimo.2016.12.45
References:
[1]

Y. Akcay, H. P. Natarajan and S. H. Xu, Joint dynamic pricing of multiple perishable products under consumer choice,, Management Science, 56 (2010), 1345.  doi: 10.1287/mnsc.1100.1178.  Google Scholar

[2]

G. R. Bitran, R. A. Caldentey and R. Vial, Pricing Policies for Perishable Products with Demand Substitution,, working paper, ().   Google Scholar

[3]

L. Dong, P. Kouvelis and Z. Tian, Dynamic pricing and inventory control of substitutable products,, Manufacturing & Service Operations Management, 11 (2008), 317.  doi: 10.1287/msom.1080.0221.  Google Scholar

[4]

S.-W. Kim and P. C. Bell, Optimal pricing and production decisions in the presence of symmetrical and asymmetrical substitution,, Omega, 39 (2011), 528.  doi: 10.1016/j.omega.2010.11.002.  Google Scholar

[5]

A. G. Kök and Y. Xu, Optimal and competitive assortments with endogenous pricing under hierarchical consumer choice models,, Management Science, 57 (2011), 1546.   Google Scholar

[6]

S. A. Lippman and K. F. McCardle, The competitive newsboy,, Operations Research, 45 (1997), 54.  doi: 10.1287/opre.45.1.54.  Google Scholar

[7]

B. Maddah and E. K. Bish, Joint pricing, assortment, and inventory decisions for a retailer's product line,, Naval Research Logistics, 54 (2007), 1.  doi: 10.1002/nav.20209.  Google Scholar

[8]

S. Mahajan and G. van Ryzin, Inventory competition under dynamic consumer choice,, Operations Research, 49 (2001), 646.  doi: 10.1287/opre.49.5.646.10603.  Google Scholar

[9]

S. Netessine and N. Rudi, Centralized and competitive inventory models with demand substitution,, Operations Research, 51 (2003), 329.  doi: 10.1287/opre.51.2.329.12788.  Google Scholar

[10]

S. Netessine, N. Rudi and Y. Wang, Inventory competition and incentives to back-order,, IIE Transactions, 38 (2006), 883.  doi: 10.1080/07408170600854750.  Google Scholar

[11]

M. Parlar, Game theoretic analysis of the substitute product inventory problem with random demand,, Naval Research Logistics, 35 (1988), 397.  doi: 10.1002/1520-6750(198806)35:3<397::AID-NAV3220350308>3.0.CO;2-Z.  Google Scholar

[12]

R. A. Shumsky and F. Zhang, Dynamic capacity management with substitution,, Operations Research, 57 (2009), 671.  doi: 10.1287/opre.1080.0610.  Google Scholar

[13]

M. Suh and G. Aydin, Dynamic pricing of substitutable products with limited inventory under logit demand,, IIE Transactions, 43 (2011), 323.  doi: 10.1080/0740817X.2010.521803.  Google Scholar

[14]

C. S. Tang and R. Yin, Joint ordering and pricing strategies for managing substitutable products,, Production and Operations Management, 16 (2007), 138.  doi: 10.1111/j.1937-5956.2007.tb00171.x.  Google Scholar

[15]

Q. Wang and M. Parlar, A three-person game theory model arising in stochastic inventory control theory,, European Journal of Operational Research, 76 (1994), 83.  doi: 10.1016/0377-2217(94)90008-6.  Google Scholar

[16]

H. Xu, D. D. Yao and S. Zheng, Optimal control of replenishment and substitution in an inventory system with nonstationary batch demand,, Production and Operations Management, 20 (2011), 727.  doi: 10.1111/j.1937-5956.2010.01191.x.  Google Scholar

[17]

Z. Xue and J. Song, Demand Management and Inventory Control for Substitutable Products,, working paper, ().   Google Scholar

[18]

P.-S You, Airline seat management with rejection-for-possible-upgrade decision,, Transportation Research Part B, 35 (2001), 507.  doi: 10.1016/S0191-2615(00)00007-2.  Google Scholar

[19]

P.-S You, Dynamic rationing policies for product with incremental upgrading demands,, European Journal of Operational Research, 144 (2003), 128.  doi: 10.1016/S0377-2217(01)00397-6.  Google Scholar

[20]

D. Zhang and W. L. Cooper, Pricing substitutable flights in airline revenue management,, European Journal of Operational Research, 197 (2009), 848.  doi: 10.1016/j.ejor.2006.10.067.  Google Scholar

[21]

X. Zhao and D. R. Atkins, Newsvendors under simultaneous price and inventory competition,, Manufacturing & Service Operations Management, 10 (2008), 539.  doi: 10.1287/msom.1070.0186.  Google Scholar

show all references

References:
[1]

Y. Akcay, H. P. Natarajan and S. H. Xu, Joint dynamic pricing of multiple perishable products under consumer choice,, Management Science, 56 (2010), 1345.  doi: 10.1287/mnsc.1100.1178.  Google Scholar

[2]

G. R. Bitran, R. A. Caldentey and R. Vial, Pricing Policies for Perishable Products with Demand Substitution,, working paper, ().   Google Scholar

[3]

L. Dong, P. Kouvelis and Z. Tian, Dynamic pricing and inventory control of substitutable products,, Manufacturing & Service Operations Management, 11 (2008), 317.  doi: 10.1287/msom.1080.0221.  Google Scholar

[4]

S.-W. Kim and P. C. Bell, Optimal pricing and production decisions in the presence of symmetrical and asymmetrical substitution,, Omega, 39 (2011), 528.  doi: 10.1016/j.omega.2010.11.002.  Google Scholar

[5]

A. G. Kök and Y. Xu, Optimal and competitive assortments with endogenous pricing under hierarchical consumer choice models,, Management Science, 57 (2011), 1546.   Google Scholar

[6]

S. A. Lippman and K. F. McCardle, The competitive newsboy,, Operations Research, 45 (1997), 54.  doi: 10.1287/opre.45.1.54.  Google Scholar

[7]

B. Maddah and E. K. Bish, Joint pricing, assortment, and inventory decisions for a retailer's product line,, Naval Research Logistics, 54 (2007), 1.  doi: 10.1002/nav.20209.  Google Scholar

[8]

S. Mahajan and G. van Ryzin, Inventory competition under dynamic consumer choice,, Operations Research, 49 (2001), 646.  doi: 10.1287/opre.49.5.646.10603.  Google Scholar

[9]

S. Netessine and N. Rudi, Centralized and competitive inventory models with demand substitution,, Operations Research, 51 (2003), 329.  doi: 10.1287/opre.51.2.329.12788.  Google Scholar

[10]

S. Netessine, N. Rudi and Y. Wang, Inventory competition and incentives to back-order,, IIE Transactions, 38 (2006), 883.  doi: 10.1080/07408170600854750.  Google Scholar

[11]

M. Parlar, Game theoretic analysis of the substitute product inventory problem with random demand,, Naval Research Logistics, 35 (1988), 397.  doi: 10.1002/1520-6750(198806)35:3<397::AID-NAV3220350308>3.0.CO;2-Z.  Google Scholar

[12]

R. A. Shumsky and F. Zhang, Dynamic capacity management with substitution,, Operations Research, 57 (2009), 671.  doi: 10.1287/opre.1080.0610.  Google Scholar

[13]

M. Suh and G. Aydin, Dynamic pricing of substitutable products with limited inventory under logit demand,, IIE Transactions, 43 (2011), 323.  doi: 10.1080/0740817X.2010.521803.  Google Scholar

[14]

C. S. Tang and R. Yin, Joint ordering and pricing strategies for managing substitutable products,, Production and Operations Management, 16 (2007), 138.  doi: 10.1111/j.1937-5956.2007.tb00171.x.  Google Scholar

[15]

Q. Wang and M. Parlar, A three-person game theory model arising in stochastic inventory control theory,, European Journal of Operational Research, 76 (1994), 83.  doi: 10.1016/0377-2217(94)90008-6.  Google Scholar

[16]

H. Xu, D. D. Yao and S. Zheng, Optimal control of replenishment and substitution in an inventory system with nonstationary batch demand,, Production and Operations Management, 20 (2011), 727.  doi: 10.1111/j.1937-5956.2010.01191.x.  Google Scholar

[17]

Z. Xue and J. Song, Demand Management and Inventory Control for Substitutable Products,, working paper, ().   Google Scholar

[18]

P.-S You, Airline seat management with rejection-for-possible-upgrade decision,, Transportation Research Part B, 35 (2001), 507.  doi: 10.1016/S0191-2615(00)00007-2.  Google Scholar

[19]

P.-S You, Dynamic rationing policies for product with incremental upgrading demands,, European Journal of Operational Research, 144 (2003), 128.  doi: 10.1016/S0377-2217(01)00397-6.  Google Scholar

[20]

D. Zhang and W. L. Cooper, Pricing substitutable flights in airline revenue management,, European Journal of Operational Research, 197 (2009), 848.  doi: 10.1016/j.ejor.2006.10.067.  Google Scholar

[21]

X. Zhao and D. R. Atkins, Newsvendors under simultaneous price and inventory competition,, Manufacturing & Service Operations Management, 10 (2008), 539.  doi: 10.1287/msom.1070.0186.  Google Scholar

[1]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

[2]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[3]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[4]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[5]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[6]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[7]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[8]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[9]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[10]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[11]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[12]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[15]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[16]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[17]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[18]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[19]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[20]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]