\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$p$th Moment absolute exponential stability of stochastic control system with Markovian switching

Abstract Related Papers Cited by
  • In this paper we discuss the $p$th moment absolute exponential stability of stochastic control system with Markovian switching. We first give a new concept of $p$th moment absolute exponential stability, then we establish some theorems under different hypotheses to guarantee the system $p$th moment absolutely exponentially stable. These sufficient conditions in our theorems are algebraic criteria in terms of matrix inequalities, and we introduce an $M$-method with MATLAB to compute them. Finally, some examples are given to illustrate our results.
    Mathematics Subject Classification: Primary: 60H10, 34F05, 93E03, 93E15; Secondary: 60J27, 60G17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. K. Basak, A. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift, Journal of Mathematical Analysis and Applications, 202 (1996), 604-622.doi: 10.1006/jmaa.1996.0336.

    [2]

    V. A. Brusin and V. A. Ugrinovskii, Stochastic stability of a class of nonlinear differential equations of Ito type, Siberian Mathematical Journal, 28 (1987), 381-393.

    [3]

    C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem, Journal of Industrial and Management Optimization, 8 (2012), 591-609.doi: 10.3934/jimo.2012.8.591.

    [4]

    R. E. Kalman, Lyapunov functions for the problem of Lur'e in automatic control, Proceedings of the National Academy of Sciences of the United States of America, 49 (1963), 201.doi: 10.1073/pnas.49.2.201.

    [5]

    D. G. Korenevskii, Algebraic criteria for absolute (relative to nonlinearity) stability of stochastic automatic control systems with nonlinear feedback, Ukrainian Mathematical Journal, 40 (1988), 616-621.doi: 10.1007/BF01057179.

    [6]

    H. J. Kushner, Stochastic Stability and Control, volume 33 of Mathematics in Science and Engineering, Academic Press, New York, 1967.

    [7]

    X. Liao, L. Q. Wang and P. Yu, Stability of Dynamical Systems, Elsevier, 2007.doi: 10.1016/S1574-6917(07)05001-5.

    [8]

    X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems, 2nd edition, Springer, 2008.doi: 10.1007/978-1-4020-8482-9.

    [9]

    D. Liberzon, Switching in Systems and Control, Springer, 2003.doi: 10.1007/978-1-4612-0017-8.

    [10]

    M. R. Liberzon, Essays on the absolute stability theory, Automation and Remote Control, 67 (2006), 1610-1644.doi: 10.1134/S0005117906100043.

    [11]

    A. I. Lurie and V. N. Postnikov, On the theory of stability of control systems, Applied Mathematics and Mechanics, 8 (1944), 246-248.

    [12]

    A. K. Mahalanabis and S. Purkayastha, Frequency-domain criteria for stability of a class of nonlinear stochastic systems, Automatic Control, IEEE Transactions on, 18 (1973), 266-270.

    [13]

    L. Li, Y. Gao and H. Wang, Second order sufficient optimality conditions for hybrid control problems with state jump, Journal of Industrial and Management Optimization, 11 (2015), 329-343.doi: 10.3934/jimo.2015.11.329.

    [14]

    X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Processes and Their Applications, 79 (1999), 45-67.doi: 10.1016/S0304-4149(98)00070-2.

    [15]

    X. Mao, Asymptotic stability for stochastic differential equations with Markovian switching, WSEAS Trans. Circuits, 1 (2002), 68-73.

    [16]

    X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006.doi: 10.1142/p473.

    [17]

    X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.doi: 10.1533/9780857099402.

    [18]

    P. V. Pakshin and V. A. Ugrinovskii, Stochastic problems of absolute stability, Automation and Remote Control, 67 (2006), 1811-1846.doi: 10.1134/S0005117906110051.

    [19]

    V. M. Popov, Absolute stability of nonlinear systems of automatic control, Automation and Remote Control, 22 (1962), 857-875.

    [20]

    Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems, Springer, 2011.doi: 10.1007/978-0-85729-256-8.

    [21]

    A. J. Van Der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer, 2000.doi: 10.1007/BFb0109998.

    [22]

    H. Xie, Theory and Application of Absolute Stability, Science Press, Beijing, 1986.

    [23]

    H. Xu and K. L. Teo, Exponential stability with-gain condition of nonlinear impulsive switched systems, Automatic Control, IEEE Transactions on, 55 (2010), 2429-2433.doi: 10.1109/TAC.2010.2060173.

    [24]

    H. Xu, K. L. Teo and W. Gui, Necessary and sufficient conditions for stability of impulsive switched linear systems, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1185-1195.doi: 10.3934/dcdsb.2011.16.1185.

    [25]

    X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control, Abstract and Applied Analysis, 2014 (2014), Hindawi Publishing Corporation.doi: 10.1155/2014/126836.

    [26]

    V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory, Soviet Math. Dokl, 3 (1962), 620-623.

    [27]

    Y. Zhang, M. Wang, H. Xu and K. L. Teo, Global stabilization of switched control systems with time delay, Nonlinear Analysis: Hybrid Systems, 14 (2014), 86-98.doi: 10.1016/j.nahs.2014.05.004.

    [28]

    Y. Zhang, Y. Zhao, H. Xu, H. Shi and K. L. Teo, On boundedness and attractiveness of nonlinear switched delay systems, In Abstract and Applied Analysis, 2013 (2013), Hindawi Publishing Corporation.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return