April  2016, 12(2): 471-486. doi: 10.3934/jimo.2016.12.471

$p$th Moment absolute exponential stability of stochastic control system with Markovian switching

1. 

Department of Mathematics, College of Science, China University of Petroleum, Beijing 102249, China, China, China, China

Received  September 2014 Revised  February 2015 Published  June 2015

In this paper we discuss the $p$th moment absolute exponential stability of stochastic control system with Markovian switching. We first give a new concept of $p$th moment absolute exponential stability, then we establish some theorems under different hypotheses to guarantee the system $p$th moment absolutely exponentially stable. These sufficient conditions in our theorems are algebraic criteria in terms of matrix inequalities, and we introduce an $M$-method with MATLAB to compute them. Finally, some examples are given to illustrate our results.
Citation: Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471
References:
[1]

G. K. Basak, A. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift,, Journal of Mathematical Analysis and Applications, 202 (1996), 604.  doi: 10.1006/jmaa.1996.0336.  Google Scholar

[2]

V. A. Brusin and V. A. Ugrinovskii, Stochastic stability of a class of nonlinear differential equations of Ito type,, Siberian Mathematical Journal, 28 (1987), 381.   Google Scholar

[3]

C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.  doi: 10.3934/jimo.2012.8.591.  Google Scholar

[4]

R. E. Kalman, Lyapunov functions for the problem of Lur'e in automatic control,, Proceedings of the National Academy of Sciences of the United States of America, 49 (1963).  doi: 10.1073/pnas.49.2.201.  Google Scholar

[5]

D. G. Korenevskii, Algebraic criteria for absolute (relative to nonlinearity) stability of stochastic automatic control systems with nonlinear feedback,, Ukrainian Mathematical Journal, 40 (1988), 616.  doi: 10.1007/BF01057179.  Google Scholar

[6]

H. J. Kushner, Stochastic Stability and Control, volume 33 of Mathematics in Science and Engineering,, Academic Press, (1967).   Google Scholar

[7]

X. Liao, L. Q. Wang and P. Yu, Stability of Dynamical Systems,, Elsevier, (2007).  doi: 10.1016/S1574-6917(07)05001-5.  Google Scholar

[8]

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems,, 2nd edition, (2008).  doi: 10.1007/978-1-4020-8482-9.  Google Scholar

[9]

D. Liberzon, Switching in Systems and Control,, Springer, (2003).  doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[10]

M. R. Liberzon, Essays on the absolute stability theory,, Automation and Remote Control, 67 (2006), 1610.  doi: 10.1134/S0005117906100043.  Google Scholar

[11]

A. I. Lurie and V. N. Postnikov, On the theory of stability of control systems,, Applied Mathematics and Mechanics, 8 (1944), 246.   Google Scholar

[12]

A. K. Mahalanabis and S. Purkayastha, Frequency-domain criteria for stability of a class of nonlinear stochastic systems,, Automatic Control, 18 (1973), 266.   Google Scholar

[13]

L. Li, Y. Gao and H. Wang, Second order sufficient optimality conditions for hybrid control problems with state jump,, Journal of Industrial and Management Optimization, 11 (2015), 329.  doi: 10.3934/jimo.2015.11.329.  Google Scholar

[14]

X. Mao, Stability of stochastic differential equations with Markovian switching,, Stochastic Processes and Their Applications, 79 (1999), 45.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar

[15]

X. Mao, Asymptotic stability for stochastic differential equations with Markovian switching,, WSEAS Trans. Circuits, 1 (2002), 68.   Google Scholar

[16]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).  doi: 10.1142/p473.  Google Scholar

[17]

X. Mao, Stochastic Differential Equations and Applications,, Elsevier, (2007).  doi: 10.1533/9780857099402.  Google Scholar

[18]

P. V. Pakshin and V. A. Ugrinovskii, Stochastic problems of absolute stability,, Automation and Remote Control, 67 (2006), 1811.  doi: 10.1134/S0005117906110051.  Google Scholar

[19]

V. M. Popov, Absolute stability of nonlinear systems of automatic control,, Automation and Remote Control, 22 (1962), 857.   Google Scholar

[20]

Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems,, Springer, (2011).  doi: 10.1007/978-0-85729-256-8.  Google Scholar

[21]

A. J. Van Der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical Systems,, Springer, (2000).  doi: 10.1007/BFb0109998.  Google Scholar

[22]

H. Xie, Theory and Application of Absolute Stability,, Science Press, (1986).   Google Scholar

[23]

H. Xu and K. L. Teo, Exponential stability with-gain condition of nonlinear impulsive switched systems,, Automatic Control, 55 (2010), 2429.  doi: 10.1109/TAC.2010.2060173.  Google Scholar

[24]

H. Xu, K. L. Teo and W. Gui, Necessary and sufficient conditions for stability of impulsive switched linear systems,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1185.  doi: 10.3934/dcdsb.2011.16.1185.  Google Scholar

[25]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control,, Abstract and Applied Analysis, 2014 (2014).  doi: 10.1155/2014/126836.  Google Scholar

[26]

V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory,, Soviet Math. Dokl, 3 (1962), 620.   Google Scholar

[27]

Y. Zhang, M. Wang, H. Xu and K. L. Teo, Global stabilization of switched control systems with time delay,, Nonlinear Analysis: Hybrid Systems, 14 (2014), 86.  doi: 10.1016/j.nahs.2014.05.004.  Google Scholar

[28]

Y. Zhang, Y. Zhao, H. Xu, H. Shi and K. L. Teo, On boundedness and attractiveness of nonlinear switched delay systems,, In Abstract and Applied Analysis, 2013 (2013).   Google Scholar

show all references

References:
[1]

G. K. Basak, A. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift,, Journal of Mathematical Analysis and Applications, 202 (1996), 604.  doi: 10.1006/jmaa.1996.0336.  Google Scholar

[2]

V. A. Brusin and V. A. Ugrinovskii, Stochastic stability of a class of nonlinear differential equations of Ito type,, Siberian Mathematical Journal, 28 (1987), 381.   Google Scholar

[3]

C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.  doi: 10.3934/jimo.2012.8.591.  Google Scholar

[4]

R. E. Kalman, Lyapunov functions for the problem of Lur'e in automatic control,, Proceedings of the National Academy of Sciences of the United States of America, 49 (1963).  doi: 10.1073/pnas.49.2.201.  Google Scholar

[5]

D. G. Korenevskii, Algebraic criteria for absolute (relative to nonlinearity) stability of stochastic automatic control systems with nonlinear feedback,, Ukrainian Mathematical Journal, 40 (1988), 616.  doi: 10.1007/BF01057179.  Google Scholar

[6]

H. J. Kushner, Stochastic Stability and Control, volume 33 of Mathematics in Science and Engineering,, Academic Press, (1967).   Google Scholar

[7]

X. Liao, L. Q. Wang and P. Yu, Stability of Dynamical Systems,, Elsevier, (2007).  doi: 10.1016/S1574-6917(07)05001-5.  Google Scholar

[8]

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems,, 2nd edition, (2008).  doi: 10.1007/978-1-4020-8482-9.  Google Scholar

[9]

D. Liberzon, Switching in Systems and Control,, Springer, (2003).  doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[10]

M. R. Liberzon, Essays on the absolute stability theory,, Automation and Remote Control, 67 (2006), 1610.  doi: 10.1134/S0005117906100043.  Google Scholar

[11]

A. I. Lurie and V. N. Postnikov, On the theory of stability of control systems,, Applied Mathematics and Mechanics, 8 (1944), 246.   Google Scholar

[12]

A. K. Mahalanabis and S. Purkayastha, Frequency-domain criteria for stability of a class of nonlinear stochastic systems,, Automatic Control, 18 (1973), 266.   Google Scholar

[13]

L. Li, Y. Gao and H. Wang, Second order sufficient optimality conditions for hybrid control problems with state jump,, Journal of Industrial and Management Optimization, 11 (2015), 329.  doi: 10.3934/jimo.2015.11.329.  Google Scholar

[14]

X. Mao, Stability of stochastic differential equations with Markovian switching,, Stochastic Processes and Their Applications, 79 (1999), 45.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar

[15]

X. Mao, Asymptotic stability for stochastic differential equations with Markovian switching,, WSEAS Trans. Circuits, 1 (2002), 68.   Google Scholar

[16]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).  doi: 10.1142/p473.  Google Scholar

[17]

X. Mao, Stochastic Differential Equations and Applications,, Elsevier, (2007).  doi: 10.1533/9780857099402.  Google Scholar

[18]

P. V. Pakshin and V. A. Ugrinovskii, Stochastic problems of absolute stability,, Automation and Remote Control, 67 (2006), 1811.  doi: 10.1134/S0005117906110051.  Google Scholar

[19]

V. M. Popov, Absolute stability of nonlinear systems of automatic control,, Automation and Remote Control, 22 (1962), 857.   Google Scholar

[20]

Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems,, Springer, (2011).  doi: 10.1007/978-0-85729-256-8.  Google Scholar

[21]

A. J. Van Der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical Systems,, Springer, (2000).  doi: 10.1007/BFb0109998.  Google Scholar

[22]

H. Xie, Theory and Application of Absolute Stability,, Science Press, (1986).   Google Scholar

[23]

H. Xu and K. L. Teo, Exponential stability with-gain condition of nonlinear impulsive switched systems,, Automatic Control, 55 (2010), 2429.  doi: 10.1109/TAC.2010.2060173.  Google Scholar

[24]

H. Xu, K. L. Teo and W. Gui, Necessary and sufficient conditions for stability of impulsive switched linear systems,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1185.  doi: 10.3934/dcdsb.2011.16.1185.  Google Scholar

[25]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control,, Abstract and Applied Analysis, 2014 (2014).  doi: 10.1155/2014/126836.  Google Scholar

[26]

V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory,, Soviet Math. Dokl, 3 (1962), 620.   Google Scholar

[27]

Y. Zhang, M. Wang, H. Xu and K. L. Teo, Global stabilization of switched control systems with time delay,, Nonlinear Analysis: Hybrid Systems, 14 (2014), 86.  doi: 10.1016/j.nahs.2014.05.004.  Google Scholar

[28]

Y. Zhang, Y. Zhao, H. Xu, H. Shi and K. L. Teo, On boundedness and attractiveness of nonlinear switched delay systems,, In Abstract and Applied Analysis, 2013 (2013).   Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[4]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[5]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[6]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[9]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[12]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[13]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[14]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[15]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[16]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[17]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[19]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]