April  2016, 12(2): 505-514. doi: 10.3934/jimo.2016.12.505

A weak condition for global stability of delayed neural networks

1. 

School of Computer and Information Engineering, Hechi University, Guangxi, Yizhou 546300, China

2. 

Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845

3. 

School of Mathematics and Statistics, Hechi University, Guangxi, Yizhou 546300, China

4. 

Department of Mathematics and Statistics, Curtin University, Perth,WA 6845, Australia

5. 

School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

Received  September 2014 Revised  February 2015 Published  June 2015

The classical analysis of asymptotical and exponential stability of neural networks needs assumptions on the existence of a positive Lyapunov function $V$ and on the strict negativity of the function $dV/dt$, which often come as a result of boundedness or uniformly almost periodicity of the activation functions. In this paper, we investigate the asymptotical stability problem of Hopfield neural networks with time delays under weaker conditions. By constructing a suitable Lyapunov function, sufficient conditions are derived to guarantee global asymptotical stability and exponential stability of the equilibrium of the system. These conditions do not require the strict negativity of $dV/dt $, nor do they require that the activation functions to be bounded or uniformly almost periodic.
Citation: Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505
References:
[1]

S. Abe, J. Kawakami and K. Hirasawa, Solving inequality constrained combinatorial optimization problems by the hopfield neural networks,, Neural Networks, 5 (1992), 663.  doi: 10.1016/S0893-6080(05)80043-7.  Google Scholar

[2]

P. Baldi and A. F. Atiya, How delays affect neural dynamics and learning,, IEEE Transactions on Neural Networks, 5 (1994), 612.  doi: 10.1109/72.298231.  Google Scholar

[3]

D. Calabuig, J. F. Monserrat, D. Gmez-Barquero and O. Lzaro, An efficient dynamic resource allocation algorithm for packet-switched communication networks based on Hopfield neural excitation method,, Neurocomputing, 71 (2008), 3439.   Google Scholar

[4]

Y. Chen and H. Xu, Exponential stability analysis and impulsive tracking control of uncertain time-delayed systems,, Journal of Global Optimization, 52 (2012), 323.  doi: 10.1007/s10898-011-9669-2.  Google Scholar

[5]

M. Forti, On global asymptotic stability of a class of nonlinear systems arising in neural network theory,, J. Differential Equations, 113 (1994), 246.  doi: 10.1006/jdeq.1994.1123.  Google Scholar

[6]

M. Forti, S. Maneti and M. Marini, Necessary and sufficient conditions for absolute stability of neural networks,, IEEE Trans. Circuits Syst. I, 41 (1994), 491.  doi: 10.1109/81.298364.  Google Scholar

[7]

M. Forti and A. Tesi, New conditions for global stability of neural networks with application to linear and quadratic programming problems,, IEEE Trans. Circuits Syst. I, 42 (1995), 354.  doi: 10.1109/81.401145.  Google Scholar

[8]

A. Gasull, J. Llibre and J. Sotomayor, Global asymptotic stability of differential equations in the plane,, J. Differential Equations, 91 (1991), 327.  doi: 10.1016/0022-0396(91)90143-W.  Google Scholar

[9]

K. Gopalsamy and X. He, Stability in asymmetric Hopfield nets with transmission delays,, Physica D, 76 (1994), 344.  doi: 10.1016/0167-2789(94)90043-4.  Google Scholar

[10]

M. W. Hirsch, Convergent activation dynamics in continuous time networks,, Neural Netw., 2 (1989), 331.  doi: 10.1016/0893-6080(89)90018-X.  Google Scholar

[11]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons,, Proc. Aead. Sci. USA, 81 (1984), 3088.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[12]

A. O. Ignatyev, On the stability of equilibrium for almost periodic systems,, Nonlinear Anal., 29 (1997), 957.  doi: 10.1016/S0362-546X(96)00078-8.  Google Scholar

[13]

E. Kaszkurewicz and A. Bhaya, On a class of globally stable neural circuits,, IEEE Trans. Circuits Syst. I, 41 (1994), 171.  doi: 10.1109/81.269055.  Google Scholar

[14]

D. G. Kelly, Stability in contractive nonlinear neural networks,, IEEE Trans. Biomed. Eng., 3 (1990), 231.  doi: 10.1109/10.52325.  Google Scholar

[15]

N. Laskaris, S. Fotopoulos, P. Papathanasopoulos and A. Bezerianos, Robust moving averages, with Hopfield neural network implementation, for monitoring evoked potential signals,, Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section, 104 (1997), 151.  doi: 10.1016/S0168-5597(97)96681-8.  Google Scholar

[16]

X. Liao, G. Chen and E. N. Sanchez, Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach,, Neural Networks, 15 (2002), 855.   Google Scholar

[17]

X. Liu and T. Chen, A new result on the global convergence of Hopfield neural networks,, IEEE Trans. Circuits Syst. I, 49 (2002), 1514.  doi: 10.1109/TCSI.2002.803358.  Google Scholar

[18]

C. Marcus and R. Westervelt, Stability of analog neural networks with delay,, Phys. Rev. A, 39 (1989), 347.  doi: 10.1103/PhysRevA.39.347.  Google Scholar

[19]

A. N. Markus and H. Yamabe, Global stability criteria for differential systems,, Osaka Math. J., 12 (1960), 305.   Google Scholar

[20]

Z. Orman, New sufficient conditions for global stability of neutral-type neural networks with time delays,, Neurocomputing, 97 (2012), 141.  doi: 10.1016/j.neucom.2012.05.016.  Google Scholar

[21]

S. Rout, Seethalakshmy, P. Srivastava and J. Majumdar, Multi-modal image segmentation using a modified Hopfield neural network,, Pattern Recognition, 31 (1998), 743.  doi: 10.1016/S0031-3203(97)00089-7.  Google Scholar

[22]

R. Sammouda, N. Adgaba, A. Touir and A. Al-Ghamdi, Agriculture satellite image segmentation using a modified artificial Hopfield neural network,, Computers in Human Behavior, 30 (2014), 436.  doi: 10.1016/j.chb.2013.06.025.  Google Scholar

[23]

P. Suganthan, E. Teoh and D. Mital, Pattern recognition by homomorphic graph matching using Hopfield neural networks,, Image and Vision Computing, 13 (1995), 45.  doi: 10.1016/0262-8856(95)91467-R.  Google Scholar

[24]

H. Tamura, Z. Zhang, X. S. Xu, M. Ishii and Z. Tang, Lagrangian object relaxation neural network for combinatorial optimization problems,, Neurocomputing, 68 (2005), 297.  doi: 10.1016/j.neucom.2005.03.003.  Google Scholar

[25]

W. Walter, Analysis I,, second ed., (1990).   Google Scholar

[26]

R. L. Wang, Z. Tang and Q. P. Cao, A lear ning method in Hopfield neural network for combinatorial optimization problem,, Neurocomputing, 48 (2002), 1021.   Google Scholar

[27]

H. Wersing, W. J. Beyn and H. Ritter, Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions,, Neural Comput., 13 (2001), 1811.  doi: 10.1162/08997660152469350.  Google Scholar

[28]

J. Wu, Symmetric functional-differential equations and neural networks with memory,, Trans. Am. Math. Soc., 350 (1999), 4799.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

[29]

J. Wu and X. Zou, Patterns of sustained oscillations in neural networks with time delayed interactions,, Appl. Math. Comput., 73 (1995), 55.  doi: 10.1016/0096-3003(94)00203-G.  Google Scholar

[30]

H. Xu and Y. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays,, Applied Mathematics and Computations, 217 (2010), 537.  doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[31]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: an LMI approach,, Journal of Industrial and management optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[32]

F. Zhang, The Schur complement and its applications. Numerical Methods and Algorithms,, New York: Springer-Verlag, 4 (2005).  doi: 10.1007/b105056.  Google Scholar

[33]

W. Zhang, A weak condition of globally asymptotic stability for neural networks,, Applied Mathematics Letters, 19 (2006), 1210.  doi: 10.1016/j.aml.2006.01.009.  Google Scholar

[34]

Available from:, ., ().   Google Scholar

show all references

References:
[1]

S. Abe, J. Kawakami and K. Hirasawa, Solving inequality constrained combinatorial optimization problems by the hopfield neural networks,, Neural Networks, 5 (1992), 663.  doi: 10.1016/S0893-6080(05)80043-7.  Google Scholar

[2]

P. Baldi and A. F. Atiya, How delays affect neural dynamics and learning,, IEEE Transactions on Neural Networks, 5 (1994), 612.  doi: 10.1109/72.298231.  Google Scholar

[3]

D. Calabuig, J. F. Monserrat, D. Gmez-Barquero and O. Lzaro, An efficient dynamic resource allocation algorithm for packet-switched communication networks based on Hopfield neural excitation method,, Neurocomputing, 71 (2008), 3439.   Google Scholar

[4]

Y. Chen and H. Xu, Exponential stability analysis and impulsive tracking control of uncertain time-delayed systems,, Journal of Global Optimization, 52 (2012), 323.  doi: 10.1007/s10898-011-9669-2.  Google Scholar

[5]

M. Forti, On global asymptotic stability of a class of nonlinear systems arising in neural network theory,, J. Differential Equations, 113 (1994), 246.  doi: 10.1006/jdeq.1994.1123.  Google Scholar

[6]

M. Forti, S. Maneti and M. Marini, Necessary and sufficient conditions for absolute stability of neural networks,, IEEE Trans. Circuits Syst. I, 41 (1994), 491.  doi: 10.1109/81.298364.  Google Scholar

[7]

M. Forti and A. Tesi, New conditions for global stability of neural networks with application to linear and quadratic programming problems,, IEEE Trans. Circuits Syst. I, 42 (1995), 354.  doi: 10.1109/81.401145.  Google Scholar

[8]

A. Gasull, J. Llibre and J. Sotomayor, Global asymptotic stability of differential equations in the plane,, J. Differential Equations, 91 (1991), 327.  doi: 10.1016/0022-0396(91)90143-W.  Google Scholar

[9]

K. Gopalsamy and X. He, Stability in asymmetric Hopfield nets with transmission delays,, Physica D, 76 (1994), 344.  doi: 10.1016/0167-2789(94)90043-4.  Google Scholar

[10]

M. W. Hirsch, Convergent activation dynamics in continuous time networks,, Neural Netw., 2 (1989), 331.  doi: 10.1016/0893-6080(89)90018-X.  Google Scholar

[11]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons,, Proc. Aead. Sci. USA, 81 (1984), 3088.  doi: 10.1073/pnas.81.10.3088.  Google Scholar

[12]

A. O. Ignatyev, On the stability of equilibrium for almost periodic systems,, Nonlinear Anal., 29 (1997), 957.  doi: 10.1016/S0362-546X(96)00078-8.  Google Scholar

[13]

E. Kaszkurewicz and A. Bhaya, On a class of globally stable neural circuits,, IEEE Trans. Circuits Syst. I, 41 (1994), 171.  doi: 10.1109/81.269055.  Google Scholar

[14]

D. G. Kelly, Stability in contractive nonlinear neural networks,, IEEE Trans. Biomed. Eng., 3 (1990), 231.  doi: 10.1109/10.52325.  Google Scholar

[15]

N. Laskaris, S. Fotopoulos, P. Papathanasopoulos and A. Bezerianos, Robust moving averages, with Hopfield neural network implementation, for monitoring evoked potential signals,, Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section, 104 (1997), 151.  doi: 10.1016/S0168-5597(97)96681-8.  Google Scholar

[16]

X. Liao, G. Chen and E. N. Sanchez, Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach,, Neural Networks, 15 (2002), 855.   Google Scholar

[17]

X. Liu and T. Chen, A new result on the global convergence of Hopfield neural networks,, IEEE Trans. Circuits Syst. I, 49 (2002), 1514.  doi: 10.1109/TCSI.2002.803358.  Google Scholar

[18]

C. Marcus and R. Westervelt, Stability of analog neural networks with delay,, Phys. Rev. A, 39 (1989), 347.  doi: 10.1103/PhysRevA.39.347.  Google Scholar

[19]

A. N. Markus and H. Yamabe, Global stability criteria for differential systems,, Osaka Math. J., 12 (1960), 305.   Google Scholar

[20]

Z. Orman, New sufficient conditions for global stability of neutral-type neural networks with time delays,, Neurocomputing, 97 (2012), 141.  doi: 10.1016/j.neucom.2012.05.016.  Google Scholar

[21]

S. Rout, Seethalakshmy, P. Srivastava and J. Majumdar, Multi-modal image segmentation using a modified Hopfield neural network,, Pattern Recognition, 31 (1998), 743.  doi: 10.1016/S0031-3203(97)00089-7.  Google Scholar

[22]

R. Sammouda, N. Adgaba, A. Touir and A. Al-Ghamdi, Agriculture satellite image segmentation using a modified artificial Hopfield neural network,, Computers in Human Behavior, 30 (2014), 436.  doi: 10.1016/j.chb.2013.06.025.  Google Scholar

[23]

P. Suganthan, E. Teoh and D. Mital, Pattern recognition by homomorphic graph matching using Hopfield neural networks,, Image and Vision Computing, 13 (1995), 45.  doi: 10.1016/0262-8856(95)91467-R.  Google Scholar

[24]

H. Tamura, Z. Zhang, X. S. Xu, M. Ishii and Z. Tang, Lagrangian object relaxation neural network for combinatorial optimization problems,, Neurocomputing, 68 (2005), 297.  doi: 10.1016/j.neucom.2005.03.003.  Google Scholar

[25]

W. Walter, Analysis I,, second ed., (1990).   Google Scholar

[26]

R. L. Wang, Z. Tang and Q. P. Cao, A lear ning method in Hopfield neural network for combinatorial optimization problem,, Neurocomputing, 48 (2002), 1021.   Google Scholar

[27]

H. Wersing, W. J. Beyn and H. Ritter, Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions,, Neural Comput., 13 (2001), 1811.  doi: 10.1162/08997660152469350.  Google Scholar

[28]

J. Wu, Symmetric functional-differential equations and neural networks with memory,, Trans. Am. Math. Soc., 350 (1999), 4799.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

[29]

J. Wu and X. Zou, Patterns of sustained oscillations in neural networks with time delayed interactions,, Appl. Math. Comput., 73 (1995), 55.  doi: 10.1016/0096-3003(94)00203-G.  Google Scholar

[30]

H. Xu and Y. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays,, Applied Mathematics and Computations, 217 (2010), 537.  doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[31]

H. Xu and K. L. Teo, $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: an LMI approach,, Journal of Industrial and management optimization, 5 (2009), 153.  doi: 10.3934/jimo.2009.5.153.  Google Scholar

[32]

F. Zhang, The Schur complement and its applications. Numerical Methods and Algorithms,, New York: Springer-Verlag, 4 (2005).  doi: 10.1007/b105056.  Google Scholar

[33]

W. Zhang, A weak condition of globally asymptotic stability for neural networks,, Applied Mathematics Letters, 19 (2006), 1210.  doi: 10.1016/j.aml.2006.01.009.  Google Scholar

[34]

Available from:, ., ().   Google Scholar

[1]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[2]

Yi Xu, Jinjie Liu, Liqun Qi. A new class of positive semi-definite tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2018186

[3]

Wei Huang, Ka-Fai Cedric Yiu, Henry Y. K. Lau. Semi-definite programming based approaches for real-time tractor localization in port container terminals. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 665-680. doi: 10.3934/naco.2013.3.665

[4]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[5]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[6]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[7]

Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410

[8]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[9]

Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317

[10]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[11]

Stephane Chretien, Paul Clarkson. A fast algorithm for the semi-definite relaxation of the state estimation problem in power grids. Journal of Industrial & Management Optimization, 2020, 16 (1) : 431-443. doi: 10.3934/jimo.2018161

[12]

Desheng Li, P.E. Kloeden. Robustness of asymptotic stability to small time delays. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1007-1034. doi: 10.3934/dcds.2005.13.1007

[13]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[14]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[15]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[16]

Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020137

[17]

Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056

[18]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[19]

David Schley, S.A. Gourley. Linear and nonlinear stability in a diffusional ecotoxicological model with time delays. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 575-590. doi: 10.3934/dcdsb.2002.2.575

[20]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]