\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a Markov chain approximation method for option pricing with regime switching

Abstract / Introduction Related Papers Cited by
  • In this paper, we discuss a Markov chain approximation method to price European options, American options and barrier options in a Markovian regime-switching environment. The model parameters are modulated by a continuous-time, finite-state, observable Markov chain, whose states represent the states of an economy. After selecting an equivalent martingale measure by the regime-switching Esscher transform, we construct a discrete-time, inhomogeneous Markov chain to approximate the dynamics of the logarithmic stock price process. Numerical examples and empirical analysis are used to illustrate the practical implementation of the method.
    Mathematics Subject Classification: Primary: 91G20, 91G60; Secondary: 60J10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Boyle and T. Draviam, Pricing exotic options under regime switching, Insurance: Mathematics and Economics, 40 (2007), 267-282.doi: 10.1016/j.insmatheco.2006.05.001.

    [2]

    W. K. Ching, X. Huang, M. Ng and T. K. Siu, Markov Chains: Models, Algorithms and Applications, 2nd edition, Springer, New York, 2013.doi: 10.1007/978-1-4614-6312-2.

    [3]

    J. C. Duan, E. Dudley, G. Gauthier and J. G. Simonato, Pricing discretely monitored barrier options by a Markov chain, The Journal of Derivatives, 10 (2003), 9-31.

    [4]

    J. C. Duan and J. G. Simonato, American option pricing under GARCH by a Markov chain approximation, Journal of Economics and Dynamic Control, 25 (2001), 1689-1718.doi: 10.1016/S0165-1889(00)00003-8.

    [5]

    R. J. Elliott, L. Aggoun and J. Moore, Hidden Markov Models: Estimation and Control, Springer, New York, 1994.

    [6]

    R. J. Elliott, L. Chan and T. K. Siu, Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.

    [7]

    R. J. Elliott, T. K. Siu and A. Badescu, On pricing and hedging options in regime-switching models with feedback effect, Journal of Economic Dynamics and Control, 35 (2011), 694-713.doi: 10.1016/j.jedc.2010.12.014.

    [8]

    R. J. Elliott, C. C. Liew and T. K. Siu, Characteristic functions and option valuation in a Markov chain market, Computers and Mathematics with Applications, 62 (2011), 65-74.doi: 10.1016/j.camwa.2011.04.050.

    [9]

    R. J. Elliott and T. K. Siu, A note on differentiability in a Markov chain market using stochastic flows, Stochastic Analysis and Applications, 33 (2015), 110-122.doi: 10.1080/07362994.2014.975359.

    [10]

    K. Fan, Y. Shen, T. K. Siu and R. Wang, Pricing foreign equity option with regime-switching, Economic Modelling, 37 (2014), 296-305.doi: 10.1016/j.econmod.2013.11.009.

    [11]

    K. Fan, Y. Shen, T. K. Siu and R. Wang, Pricing annuity guarantees under a double regime-switching model, Insurance: Mathematics and Economics, 62 (2015), 62-78.doi: 10.1016/j.insmatheco.2015.02.005.

    [12]

    S. M. Goldfeld and R. E. Quandt, A Markov model for switching regressions, Jounal of Econometrics, 1 (1973), 3-16.doi: 10.1016/0304-4076(73)90002-X.

    [13]

    J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57 (1989), 357-384.doi: 10.2307/1912559.

    [14]

    R. H. Liu, Q. Zhang and G. Yin, Option pricing in a regime-switching model using the fast Fourier transform, Journal of Applied Mathematics and Stochastic Analysis, Article ID 18109 (2006), 1-22.doi: 10.1155/JAMSA/2006/18109.

    [15]

    R. Norberg, The Markov chain market, ASTIN Bulletin, 33 (2003), 265-288.doi: 10.2143/AST.33.2.503693.

    [16]

    S. R. Pliska, Introduction to Mathematical Finance: Discrete Time Models, Blackwell Publishers, United States, 1997.

    [17]

    R. E. Quandt, The estimation of parameters of linear regression system obeying two separate regimes, Journal of the American Statistical Assocation, 55 (1958), 873-880.doi: 10.1080/01621459.1958.10501484.

    [18]

    Y. Shen and T. K. Siu, Pricing bond options under a Markovian regime-switching Hull-White model, Economic Modelling, 30 (2013), 933-940.doi: 10.1016/j.econmod.2012.09.041.

    [19]

    Y. Shen, K. Fan and T. K. Siu, Option valuation under a double regime-switching model, Journal of Futures Markets, 34 (2014), 451-478.doi: 10.1002/fut.21613.

    [20]

    J. G. Simonato, Computing American option prices in the lognormal jump-diffusion framework with a Markov chain, Finance Research Letters, 8 (2011), 220-226.doi: 10.1016/j.frl.2011.01.002.

    [21]

    T. K. Siu, Regime Switching Risk: To Price or Not To Price? International Journal of Stochastic Analysis, Article ID 843246 (2011), 14 Pages.

    [22]

    T. K. Siu, Integration by parts and martingale representation for a Markov chain, Abstract and Applied Analysis, Article ID 438258 (2014), 11 Pages.doi: 10.1155/2014/438258.

    [23]

    N. Song, W. K. Ching, T. K. Siu, E. S. Fung and M. K. Ng, Option valuation under a multivariate Markov chain model, Proceedings of CSO2010, Huangshan, IEEE Computer Society Proceedings, 1 (2010), 177-181.doi: 10.1109/CSO.2010.73.

    [24]

    H. Tong, On a threshold model, in Pattern Recognition and Signal Processing (ed. C. H. Chen), NATO ASI Series E: Applied Sc. No. 29, The Netherlands: Sijthoff & Noordhoff, (1978), 575-586.doi: 10.1007/978-94-009-9941-1_24.

    [25]

    H. Tong, Threshold Models in Non-linear Time Series Analysis, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-1-4684-7888-4.

    [26]

    J. van der Hoek and R. J. Elliott, American option prices in a Markov chain market model, Applied Stochastic Models in Business and Industry, 28 (2012), 35-59.doi: 10.1002/asmb.893.

    [27]

    J. van der Hoek and R. J. Elliott, Asset pricing using finite state Markov chain stochastic discount functions, Stochastic Analysis and Applications, 30 (2012), 865-894.doi: 10.1080/07362994.2012.704852.

    [28]

    F. L. Yuen and H. Yang, Option pricing with regime switching by trinomial tree method, Journal of Computational and Applied Mathematics, 233 (2010), 1821-1833.doi: 10.1016/j.cam.2009.09.019.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(514) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return