Citation: |
[1] | |
[2] |
Xiluodu, Chinese National Committee on Large Dams, URL: http://www.chincold.org.cn/. |
[3] |
E. Ammar, On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem, Information Sciences, 178 (2008), 468-484.doi: 10.1016/j.ins.2007.03.029. |
[4] |
O. Atli and C. Kahraman, Fuzzy resource-constrained project scheduling using taboo search algorithm, International Journal of Intelligent Systems, 27 (2012), 873-907.doi: 10.1002/int.21552. |
[5] |
H. Aytug, M. Lawley and et al., Executing production schedules in the face of uncertainties: A review and some future directions, European Journal of Operational Research, 161 (2005), 86-110.doi: 10.1016/j.ejor.2003.08.027. |
[6] |
S. Bag, D. Chakraborty and A. Roy, A production inventory model with fuzzy random demand and with flexibility and reliability considerations, Computers and Industrial Engineering, 56 (2009), 411-416.doi: 10.1016/j.cie.2008.07.001. |
[7] |
T. Bhaskar, M. Pal and et al, A heuristic method for RCPSP with fuzzy activity times, European Journal of Operational Research, 208 (2011), 57-66.doi: 10.1016/j.ejor.2010.07.021. |
[8] |
J. Cai, Hydropower in China, Master Thesis, University of Gävle, 2009. |
[9] |
W.Chen, R. Xiao and H. Lu, A chaotic PSO approach to multi-mode resource-constraint project scheduling with uncertainty, International Journal of Computational Science and Engineering, 6 (2011), 5-15. |
[10] |
J. Choi M. Realff and J. Lee, Dynamic programmingin a heuristically confined state space: astochastic resource-constrained project scheduling application, Computers and Chemical Engineering, 28 (2004), 1039-1058. |
[11] |
F. Deblaere, E. Demeulemeester and W. Herroelen, Proactive policies for the stochastic resource-constrained project scheduling problem, European Journal of Operational Research, 214 (2011), 308-316.doi: 10.1016/j.ejor.2011.04.019. |
[12] |
S. Elmaghraby, Activity Networks-Project Planning and Control by Network Models, New York: Wiley, 1977. |
[13] |
R. Freeman, A generalized network approach to project activity sequencing, IRE Transactions on Engineering Management, 7 (1960), 103-107.doi: 10.1109/IRET-EM.1960.5007550. |
[14] |
L. Gan and J. Xu, Control risk for multi-mode resource-constrained project scheduling problem under hybrid uncertainty, Journal of Management in Engineering, Inpress, (2013). |
[15] |
Y. Gao, G. Zhang and et al., Particle swarm optimization for bi-level pricing problems in supply chains, Journal of Global Optimization, 51 (2011), 245-254.doi: 10.1007/s10898-010-9595-8. |
[16] |
S. He, Q. Wu and et al., A particle swarm optimizer with passive congregation, BioSystems, 78 (2004), 135-147.doi: 10.1016/j.biosystems.2004.08.003. |
[17] |
W. Herroelen and R. Leus, Project scheduling under uncertainty: Survey and research potentials, European Journal of Operational Research, 165 (2005), 289-306.doi: 10.1016/j.ejor.2004.04.002. |
[18] |
H. Ke and B. Liu, Project scheduling problem with stochastic activity duration times, Applied Mathematics and Computation, 168 (2005), 342-353.doi: 10.1016/j.amc.2004.09.002. |
[19] |
B. Keller and G. Bayraksan, Scheduling jobs sharing multiple resources under uncertainty: A stochastic programming approach, IIE Transactions, 42 (2009), 16-30.doi: 10.1080/07408170902942683. |
[20] |
J. Kennedy and R. Eberhart, Particle swarm optimization, In Proceedings of the IEEE Conference on Neural Networks, Piscataway: IEEE Service Center, 1995, 1942-1948.doi: 10.1109/ICNN.1995.488968. |
[21] |
E. Klerides and E. Hadjiconstantinou, A decomposition-based stochastic programming approach for the project scheduling problem under time/cost trade-off settings and uncertain durations, Computers and Operations Research, 37 (2010), 2131-2140.doi: 10.1016/j.cor.2010.03.002. |
[22] |
A. Kovács and T. Kis, Constraint programming approach to a bilevel scheduling problem, Constraints, 16 (2011), 317-340.doi: 10.1007/s10601-010-9102-3. |
[23] |
G. Kopanos, L. Puigjaner and M. Georgiadis, A bi-level decomposition methodology for scheduling batch chemical production facilities, Computer Aided Chemical Engineering, 1627 (2009), 681-686.doi: 10.1016/S1570-7946(09)70334-7. |
[24] |
R. Kuo and C. Huang, Application of particle swarm optimization algorithm for solving bi-level linear programming problem, Computers and Mathematics with Applications, 58 (2009), 678-685.doi: 10.1016/j.camwa.2009.02.028. |
[25] |
H. Kwakernaak, Fuzzy random variables-I, definitions and theorems, Information Sciences, 15 (1978), 1-29.doi: 10.1016/0020-0255(78)90019-1. |
[26] |
O. Lambrechts, E. Demeulemeester and W. Herroelen, Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities, Journal of Scheduling, 11 (2008), 369-385.doi: 10.1007/s10951-007-0021-0. |
[27] |
O. Lambrechts, E. Demeulemeester and W. Herroelen, A tabu search procedure for developing robust predictive project schedules, International Journal of Production Economics, 111 (2008), 493-508.doi: 10.1016/j.ijpe.2007.02.003. |
[28] |
J. Li and J. Xu, A novel selection model in a hybrid uncertain environment, Omega, 37 (2009), 439-449. |
[29] |
B. Liu and Y. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450. |
[30] |
Y. Lu, Key technologies for the construction of the Xiluodu high arch dam on the Jinsha River in the development of hydropower in western China, China Three Gorges Copporation, (2012). |
[31] |
J. Nematian, K. Eshghi and A. Jahromi, A resource-constrained project scheduling problem with fuzzy random duration, Journal of Uncertain Systems, 4 (2010), 123-132. |
[32] |
H. Peng, Z. Chen and L. Sun, A bilevel program for solving project scheduling problems in network level pavement management system, Journal of Tongji University (Natural Science), 38 (2010), 380-385. |
[33] |
J. Peng and B. Liu, Birandom variables and birandom programming, Computers and Industrial Engineering, 53 (2007), 433-453.doi: 10.1016/j.cie.2004.11.003. |
[34] |
H. Prade, Using fuzzy set theory in a scheduling problem: A case study, Fuzzy Sets and Systems, 2 (1979), 153-165.doi: 10.1016/0165-0114(79)90022-8. |
[35] |
M. Puri and D. Ralescu, Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114 (1986), 409-422.doi: 10.1016/0022-247X(86)90093-4. |
[36] |
Y. Shi and R. Eberhart, Particle swarm optimization, In Proc. IEEE Int. Conf. on Neural Networks, 1998, pp. 69-73. |
[37] |
B. Xiao, Key technical issues in design of Xiluodu project, China Three Gorges Construction, 11 (2004), 34-37. |
[38] |
J. Xu and C. Ding, A class of chance constrained multiobjective linear programming with birandom coefficients and its application to vendors selection, International Journal of Production Economics, 131 (2011), 709-720.doi: 10.1016/j.ijpe.2011.02.020. |
[39] |
J. Xu and J. Gang, Multi-objective bilevel construction material transportation scheduling in large-scale construction projects under a fuzzy random environment, Transportation Planning and Technology, 36 (2013), 352-376.doi: 10.1080/03081060.2013.798486. |
[40] |
J. Xu and Z. Zeng, A dynamic programming-based particle swarm optimization algorithm for an inventory management problem under uncertainty, Engineering Optimization, Inpress, (2012).doi: 10.1080/0305215X.2012.709514. |
[41] |
J. Xu and Z. Zhang, A fuzzy random resource-constrained scheduling model with multiple projects and its application to a working procedure in a large-scale water conservancy and hydropower construction project, Journal of Scheduling, 15 (2012), 253-272.doi: 10.1007/s10951-010-0173-1. |
[42] |
J. Xu and X. Zhou, A class of multi-objective expected value decision-making model with bi-random coefficients and its application to flow shop scheduling problem, Information Sciences, 179 (2009), 2997-3017.doi: 10.1016/j.ins.2009.04.009. |
[43] |
L. Yan, Chance-constrained portfolio selection with bi-random returns, Modern Applied Science, 3 (2009), 161-165. |
[44] |
H. Zhang and C. Tam, Multimode project scheduling based on particle swarm optimization, Computer-Aided Civil and Infrastructure Engineering, 21 (2006), 93-103. |
[45] |
T. Zhang T. Hu and et al., An improved particle swarm optimization for solving bilevel multiobjective programming problem, Journal of Applied Mathematics, 21 (2012), Article ID 626717, 13 pages.doi: 10.1155/2012/626717. |
[46] |
Z. Zhang, Bi-level Multi-objective Resource-constrained Project Scheduling Models under Complex Random Phenomena and the Application, Doctoral Dissertation, Sichuan University (In Chinese), 2011. |
[47] |
Z. Zhang and J. Xu, A multi-mode resource-constrained project scheduling model with bi-random coefficients for drilling grouting construction project, International Journal of Civil Engineering, 11 (2013), 1-13. |
[48] |
G. Zhu, J. Bard and G. Yu, A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem, INFORMS Journal on Computing, 18 (2006), 377-390.doi: 10.1287/ijoc.1040.0121. |
[49] |
G. Zhu, J. Bard and G. Yu, A two-stage stochastic programming approach for project planning with uncertain activity durations, Journal of Scheduling, 10 (2007), 167-180.doi: 10.1007/s10951-007-0008-x. |