April  2016, 12(2): 609-624. doi: 10.3934/jimo.2016.12.609

An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure

1. 

Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea

2. 

Department of Industrial Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, South Korea, South Korea

Received  July 2014 Revised  March 2015 Published  June 2015

Inventory models are widely used in a variety of real-world applications. In particular, inventory systems with perishable items have received a significant amount of attention. We consider an $(s,S)$ continuous inventory model with perishable items, impatient customers, and random lead times. Two characteristic behaviors of impatient customers are balking and reneging. Balking is when a customer departs the system if the item they desire is unavailable. Reneging occurs when a waiting customer leaves the system if their demand is not met within a set period of time. The proposed system is modeled as a two-dimensional Markov process with level-dependent $G/M/1$-type structure. We also consider independent and identically distributed replenishment lead times that follow a phase-type distribution. We find an efficient approximation method for the joint stationary distribution of the number of items in the system, and provide formulas for several performance measures. Moreover, to minimize system costs, we find the optimal values of $s$ and $S$ numerically and perform a sensitivity analysis on key parameters.
Citation: Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609
References:
[1]

E. Altman and A. A. Borovkov, On the stability of retrial queues,, Queueing Syst., 26 (1997), 343. doi: 10.1023/A:1019193527040.

[2]

S. Asmussen, Applied Probability and Queues,, John Wiley & Sons, (1987).

[3]

A. Brandt and M. Brandt, On the M(n)/M(n)/s queue with impatient calls,, Perform. Eval., 35 (1999), 1.

[4]

A. Brandt and M. Brandt, Asymptotic results and a markovian approximation for the M(n)/M(n)/s+GI system,, Queueing Syst., 41 (2002), 73. doi: 10.1023/A:1015781818360.

[5]

L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Commun. Statist. - Stochastic Models, 11 (1995), 497. doi: 10.1080/15326349508807357.

[6]

S. Charkravarthy and J. Daniel, A markovian inventory system with random shelf time and back orders,, Computers and Industrial Engineering, 47 (2004), 315.

[7]

G. I. Falin, On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls,, Adv. Appl. Prob., 16 (1984), 447. doi: 10.2307/1427079.

[8]

Qi-Ming He, E. M. Jewkes and J. Buzacott, The value of information used in inventory control of a make-to-order inventory-production system,, IIE Transactions, 34 (2002), 999. doi: 10.1080/07408170208928929.

[9]

S. Ioannidis, O. Jouini, A. A. Economopoulos and V. S. Kouikoglou, Control policies for single-stage production systems with perishable inventory and customer impatience,, Annals of Operations Research, (2012), 1. doi: 10.1007/s10479-012-1058-9.

[10]

S. Kalpakam and K. P. Sapna, Continuous review $(s,S)$ inventory system with random lifetimes and positive leadtimes,, Operations Research Letters, 16 (1994), 115. doi: 10.1016/0167-6377(94)90066-3.

[11]

S. Kalpakam and K. P. Sapna, $(S-1,S)$ perishable systems with stochastic lead times,, Mathematical and Computer Modelling, 21 (1995), 95. doi: 10.1016/0895-7177(95)00026-X.

[12]

I. Karaesmen, A. Scheller-Wolf and B. Deniz, Managing perishable and aging invetories: Review and future research directions,, In Planning Production and Inventories in the Extended Enterprise, (2011), 393.

[13]

A. Krishnamoorthy, K. P. Jose and V. C. Narayanan, Numerical investigation of a PH/PH/1 inventory system with positive service time and shortage,, Neural Parallel & Scientific Comp., 16 (2008), 579.

[14]

S. Kumaraswamy and E. Sankarasubramanian, A continuous review of $(S-s)$ inventory systems in which depletion is due to demand and failure of units,, Journal of Operational Research Society, 32 (1981), 997.

[15]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on statistics and applied probability, (1999). doi: 10.1137/1.9780898719734.

[16]

L. Liu, $(s,S)$ continous review models for inventory with random lifetimes,, Operations Research Letters, 9 (1990), 161. doi: 10.1016/0167-6377(90)90014-V.

[17]

L. Liu and T. Yang, An $(s,S)$ random lifetime inventory model with a positive lead time,, European Journal of Operational Research, 112 (1999), 52. doi: 10.1016/S0377-2217(97)00426-8.

[18]

S. Nahmias, Perishable inventory theory: A review,, Operational Research, 30 (1982), 680. doi: 10.1287/opre.30.4.680.

[19]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).

[20]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).

[21]

D. Perry and W. Stadje, Perishable inventory systems with impatient demands,, Math. Meth. of OR, 50 (1999), 77.

[22]

G. P. Prestacos, Blood inventory management,, Management Science, 30 (1984), 777.

[23]

M. Raafat, Survey of literature on continuously deteriorating inventory models,, Journal of Operational Research Society, 42 (1991), 27.

[24]

N. Ravichandran, Stochastic analysis of a continous review perishable inventory system with positive lead time and Poisson demand,, European Journal of Operational Research, 84 (1995), 444.

[25]

C. P. Schmidt and S. Nahmias, $(S-1,S)$ policies for perishable inventory,, Management Science, 31 (1985), 719. doi: 10.1287/mnsc.31.6.719.

[26]

A. R. Ward and P. W. Glynn, A diffusion approximation for a markovian queue with reneging,, Queueing Syst., 43 (2003), 103. doi: 10.1023/A:1021804515162.

[27]

S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/n + G queue,, Queueing Syst., 51 (2005), 361. doi: 10.1007/s11134-005-3699-8.

show all references

References:
[1]

E. Altman and A. A. Borovkov, On the stability of retrial queues,, Queueing Syst., 26 (1997), 343. doi: 10.1023/A:1019193527040.

[2]

S. Asmussen, Applied Probability and Queues,, John Wiley & Sons, (1987).

[3]

A. Brandt and M. Brandt, On the M(n)/M(n)/s queue with impatient calls,, Perform. Eval., 35 (1999), 1.

[4]

A. Brandt and M. Brandt, Asymptotic results and a markovian approximation for the M(n)/M(n)/s+GI system,, Queueing Syst., 41 (2002), 73. doi: 10.1023/A:1015781818360.

[5]

L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Commun. Statist. - Stochastic Models, 11 (1995), 497. doi: 10.1080/15326349508807357.

[6]

S. Charkravarthy and J. Daniel, A markovian inventory system with random shelf time and back orders,, Computers and Industrial Engineering, 47 (2004), 315.

[7]

G. I. Falin, On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls,, Adv. Appl. Prob., 16 (1984), 447. doi: 10.2307/1427079.

[8]

Qi-Ming He, E. M. Jewkes and J. Buzacott, The value of information used in inventory control of a make-to-order inventory-production system,, IIE Transactions, 34 (2002), 999. doi: 10.1080/07408170208928929.

[9]

S. Ioannidis, O. Jouini, A. A. Economopoulos and V. S. Kouikoglou, Control policies for single-stage production systems with perishable inventory and customer impatience,, Annals of Operations Research, (2012), 1. doi: 10.1007/s10479-012-1058-9.

[10]

S. Kalpakam and K. P. Sapna, Continuous review $(s,S)$ inventory system with random lifetimes and positive leadtimes,, Operations Research Letters, 16 (1994), 115. doi: 10.1016/0167-6377(94)90066-3.

[11]

S. Kalpakam and K. P. Sapna, $(S-1,S)$ perishable systems with stochastic lead times,, Mathematical and Computer Modelling, 21 (1995), 95. doi: 10.1016/0895-7177(95)00026-X.

[12]

I. Karaesmen, A. Scheller-Wolf and B. Deniz, Managing perishable and aging invetories: Review and future research directions,, In Planning Production and Inventories in the Extended Enterprise, (2011), 393.

[13]

A. Krishnamoorthy, K. P. Jose and V. C. Narayanan, Numerical investigation of a PH/PH/1 inventory system with positive service time and shortage,, Neural Parallel & Scientific Comp., 16 (2008), 579.

[14]

S. Kumaraswamy and E. Sankarasubramanian, A continuous review of $(S-s)$ inventory systems in which depletion is due to demand and failure of units,, Journal of Operational Research Society, 32 (1981), 997.

[15]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on statistics and applied probability, (1999). doi: 10.1137/1.9780898719734.

[16]

L. Liu, $(s,S)$ continous review models for inventory with random lifetimes,, Operations Research Letters, 9 (1990), 161. doi: 10.1016/0167-6377(90)90014-V.

[17]

L. Liu and T. Yang, An $(s,S)$ random lifetime inventory model with a positive lead time,, European Journal of Operational Research, 112 (1999), 52. doi: 10.1016/S0377-2217(97)00426-8.

[18]

S. Nahmias, Perishable inventory theory: A review,, Operational Research, 30 (1982), 680. doi: 10.1287/opre.30.4.680.

[19]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).

[20]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).

[21]

D. Perry and W. Stadje, Perishable inventory systems with impatient demands,, Math. Meth. of OR, 50 (1999), 77.

[22]

G. P. Prestacos, Blood inventory management,, Management Science, 30 (1984), 777.

[23]

M. Raafat, Survey of literature on continuously deteriorating inventory models,, Journal of Operational Research Society, 42 (1991), 27.

[24]

N. Ravichandran, Stochastic analysis of a continous review perishable inventory system with positive lead time and Poisson demand,, European Journal of Operational Research, 84 (1995), 444.

[25]

C. P. Schmidt and S. Nahmias, $(S-1,S)$ policies for perishable inventory,, Management Science, 31 (1985), 719. doi: 10.1287/mnsc.31.6.719.

[26]

A. R. Ward and P. W. Glynn, A diffusion approximation for a markovian queue with reneging,, Queueing Syst., 43 (2003), 103. doi: 10.1023/A:1021804515162.

[27]

S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/n + G queue,, Queueing Syst., 51 (2005), 361. doi: 10.1007/s11134-005-3699-8.

[1]

Jerim Kim, Bara Kim, Hwa-Sung Kim. G/M/1 type structure of a risk model with general claim sizes in a Markovian environment. Journal of Industrial & Management Optimization, 2012, 8 (4) : 909-924. doi: 10.3934/jimo.2012.8.909

[2]

Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89

[3]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1345-1373. doi: 10.3934/jimo.2018098

[4]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[5]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[6]

Sung-Seok Ko. A nonhomogeneous quasi-birth-death process approach for an $ (s, S) $ policy for a perishable inventory system with retrial demands. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019009

[7]

Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012

[8]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018113

[9]

Guodong Yi, Xiaohong Chen, Chunqiao Tan. Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018112

[10]

Tatsuaki Kimura, Hiroyuki Masuyama, Yutaka Takahashi. Light-tailed asymptotics of GI/G/1-type Markov chains. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2093-2146. doi: 10.3934/jimo.2017033

[11]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[12]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[13]

Hideaki Takagi. Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1701-1726. doi: 10.3934/jimo.2018028

[14]

Fuying Jing, Zirui Lan, Yang Pan. Forecast horizon of dynamic lot size model for perishable inventory with minimum order quantities. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019010

[15]

Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1317-1344. doi: 10.3934/jimo.2018097

[16]

Francisco Sánchez-Sánchez, Miguel Vargas-Valencia. Games with nested constraints given by a level structure. Journal of Dynamics & Games, 2018, 5 (2) : 95-107. doi: 10.3934/jdg.2018007

[17]

Alexander O. Brown, Christopher S. Tang. The impact of alternative performance measures on single-period inventory policy. Journal of Industrial & Management Optimization, 2006, 2 (3) : 297-318. doi: 10.3934/jimo.2006.2.297

[18]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[19]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[20]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]