April  2016, 12(2): 625-636. doi: 10.3934/jimo.2016.12.625

Optimal investment strategy on advertisement in duopoly

1. 

Institute of Systems Science, Northeastern University, Shenyang, Liaoning Province, 110819, China

2. 

Institute of Systems Science, Northeastern University, Shenyang, Liaoning, 110819

3. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845

4. 

Department of Computing, Curtin University of Technology, Perth, WA 6102

Received  September 2014 Revised  March 2015 Published  June 2015

In this paper, we will investigate a duopoly competition issue in a commencing period of horizontal expansion. This is an important problem in marketing investment for new products in free market. First, we propose a new market model characterized by nonlinear differential-algebraic equations with continuous inequality constraints, which aims to maximize an enterprise's product market share rather than its profit in the commencing period in an environment of the duopoly market. In order to solve the investment problem numerically based on proposed model, the control parameterization technique together with the constraint transcription method is used by transforming the proposed problem into a sequence of optimal parameter selection problems. Finally, a practical example on beer sales is used to show the effectiveness of proposed model and we present the optimal advertising strategies corresponding to different competition situations.
Citation: Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625
References:
[1]

B. L. Bai and R. X. Bai, The Modern Western Economic Theory,, Economic Science Press, (2011). Google Scholar

[2]

F. M. Bass, A. Krishnamoorthy, A. Prasad and S. P. Sethi, Generic and brand advertising strategies in a dynamic duopoly,, Marketing Science, 24 (2005), 556. doi: 10.1287/mksc.1050.0119. Google Scholar

[3]

G. M. Erickson, An oligopoly model of dynamic advertising competition,, European Journal of Operational Research, 19 (2009), 374. doi: 10.1016/j.ejor.2008.06.023. Google Scholar

[4]

G. M. Erickson, Advertising competition in a dynamic oligopoly with multiple brands,, Operations Research, 57 (2009), 1106. doi: 10.1287/opre.1080.0663. Google Scholar

[5]

G. Fasano and J. Pintér, Modeling and Optimization in Space Engineering,, Springer, (2013). doi: 10.1007/978-1-4614-4469-5. Google Scholar

[6]

H. Gao, Western Economics: Macro Part,, China Renmin University Press, (2011). Google Scholar

[7]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER 3: Optimal Control Software, Version 2.0,, Theory and user manual, (2002). Google Scholar

[8]

C. H. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, Journal of Optimization Theory and Applications, 154 (2012), 30. doi: 10.1007/s10957-012-0006-9. Google Scholar

[9]

A. Krishnamoorthy, A. Prasad and S. P. Sethi, Optimal pricing and advertising in a durable-good duopoly,, European Journal of Operational Research, 200 (2010), 486. doi: 10.1016/j.ejor.2009.01.003. Google Scholar

[10]

B. Li, K. L. Teo and G. R. Duan, Optimal control computation for discrete time time-delayed optimal control problem with all-time-step inequality constraints,, International Journal of Innovative Computing, 6 (2010), 3157. Google Scholar

[11]

B. Li, K. L. Teo, C. C. Lim and G. R. Duan, An optimal PID controller design for nonlinear constrained optimal control problems,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1101. doi: 10.3934/dcdsb.2011.16.1101. Google Scholar

[12]

B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minmax optimal control problems with applications,, The ANZIAM Journal, 51 (2009), 162. doi: 10.1017/S1446181110000040. Google Scholar

[13]

B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles,, Applied Mathematics and Computation, 224 (2013), 866. doi: 10.1016/j.amc.2013.08.092. Google Scholar

[14]

B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260. doi: 10.1007/s10957-011-9904-5. Google Scholar

[15]

R. C. Loxtonnd, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250. doi: 10.1016/j.automatica.2009.05.029. Google Scholar

[16]

T. Matsumura and T. Sunada, Advertising competition in a mixed oligopoly,, Economics Letters, 119 (2013), 183. doi: 10.1016/j.econlet.2013.02.021. Google Scholar

[17]

J. P. Nelson, Beer advertising and marketing update: structure, conduct, and social costs,, Review of Industrial Organization, 26 (2005), 269. Google Scholar

[18]

A. Prasad and S. P. Sethi, Competitive advertising under uncertainty: A stochastic differential game approach,, Journal of Optimization Theory and Applications, 123 (2004), 163. doi: 10.1023/B:JOTA.0000043996.62867.20. Google Scholar

[19]

A. Prasad, S. P. Sethi and P. A. Naik, Understanding the impact of churn in dynamic oligopoly markets,, Automatica, 48 (2012), 2882. doi: 10.1016/j.automatica.2012.08.031. Google Scholar

[20]

J. Qi and D. W. Wang, On analysis of chaotic synchronization in an advertising competition model,, Journal of Management Sciences in China, 7 (2004), 27. Google Scholar

[21]

J. Qi and D. W. Wang, Optimal control strategies for an advertising competing model,, Systems Engineering-Theory & Practice, 27 (2007), 39. Google Scholar

[22]

S. P. Sethi, Optimal control of the Vidale-Wolfe advertising model,, Operations Research, 21 (1973), 998. doi: 10.1287/opre.21.4.998. Google Scholar

[23]

S. P. Sethi, A. Prasad and X. L. He, Optimal advertising and pricing in a new-product adoption model,, Journal of Optimization Theory and Applications, 139 (2008), 351. doi: 10.1007/s10957-008-9472-5. Google Scholar

[24]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,, Springer Heidelberg, (2002). doi: 10.1007/978-0-387-21738-3. Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach to optimal control problems,, Longman Scientific and Technical, (1991). Google Scholar

[26]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 40 (1999), 314. doi: 10.1017/S0334270000010936. Google Scholar

[27]

M. L. Vidale and H. B. Wolfe, An operations-research study of sales response to advertising,, Operations Research, 5 (1957), 370. doi: 10.1287/opre.5.3.370. Google Scholar

[28]

Q. Wang and Z. Wu, A duopolistic model of dynamic competitive advertising,, European Journal of Operational Research, 128 (2001), 213. doi: 10.1016/S0377-2217(99)00346-X. Google Scholar

[29]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem,, Journal of Industrial Management and Optimization, 8 (2012), 485. doi: 10.3934/jimo.2012.8.485. Google Scholar

[30]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial and Management Optimization, 6 (2010), 895. doi: 10.3934/jimo.2010.6.895. Google Scholar

[31]

J. K. Zhang, Advertising Economics Practical Tutorial,, Shanghai Far East Publishers, (1998). Google Scholar

show all references

References:
[1]

B. L. Bai and R. X. Bai, The Modern Western Economic Theory,, Economic Science Press, (2011). Google Scholar

[2]

F. M. Bass, A. Krishnamoorthy, A. Prasad and S. P. Sethi, Generic and brand advertising strategies in a dynamic duopoly,, Marketing Science, 24 (2005), 556. doi: 10.1287/mksc.1050.0119. Google Scholar

[3]

G. M. Erickson, An oligopoly model of dynamic advertising competition,, European Journal of Operational Research, 19 (2009), 374. doi: 10.1016/j.ejor.2008.06.023. Google Scholar

[4]

G. M. Erickson, Advertising competition in a dynamic oligopoly with multiple brands,, Operations Research, 57 (2009), 1106. doi: 10.1287/opre.1080.0663. Google Scholar

[5]

G. Fasano and J. Pintér, Modeling and Optimization in Space Engineering,, Springer, (2013). doi: 10.1007/978-1-4614-4469-5. Google Scholar

[6]

H. Gao, Western Economics: Macro Part,, China Renmin University Press, (2011). Google Scholar

[7]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER 3: Optimal Control Software, Version 2.0,, Theory and user manual, (2002). Google Scholar

[8]

C. H. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, Journal of Optimization Theory and Applications, 154 (2012), 30. doi: 10.1007/s10957-012-0006-9. Google Scholar

[9]

A. Krishnamoorthy, A. Prasad and S. P. Sethi, Optimal pricing and advertising in a durable-good duopoly,, European Journal of Operational Research, 200 (2010), 486. doi: 10.1016/j.ejor.2009.01.003. Google Scholar

[10]

B. Li, K. L. Teo and G. R. Duan, Optimal control computation for discrete time time-delayed optimal control problem with all-time-step inequality constraints,, International Journal of Innovative Computing, 6 (2010), 3157. Google Scholar

[11]

B. Li, K. L. Teo, C. C. Lim and G. R. Duan, An optimal PID controller design for nonlinear constrained optimal control problems,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1101. doi: 10.3934/dcdsb.2011.16.1101. Google Scholar

[12]

B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minmax optimal control problems with applications,, The ANZIAM Journal, 51 (2009), 162. doi: 10.1017/S1446181110000040. Google Scholar

[13]

B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles,, Applied Mathematics and Computation, 224 (2013), 866. doi: 10.1016/j.amc.2013.08.092. Google Scholar

[14]

B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260. doi: 10.1007/s10957-011-9904-5. Google Scholar

[15]

R. C. Loxtonnd, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250. doi: 10.1016/j.automatica.2009.05.029. Google Scholar

[16]

T. Matsumura and T. Sunada, Advertising competition in a mixed oligopoly,, Economics Letters, 119 (2013), 183. doi: 10.1016/j.econlet.2013.02.021. Google Scholar

[17]

J. P. Nelson, Beer advertising and marketing update: structure, conduct, and social costs,, Review of Industrial Organization, 26 (2005), 269. Google Scholar

[18]

A. Prasad and S. P. Sethi, Competitive advertising under uncertainty: A stochastic differential game approach,, Journal of Optimization Theory and Applications, 123 (2004), 163. doi: 10.1023/B:JOTA.0000043996.62867.20. Google Scholar

[19]

A. Prasad, S. P. Sethi and P. A. Naik, Understanding the impact of churn in dynamic oligopoly markets,, Automatica, 48 (2012), 2882. doi: 10.1016/j.automatica.2012.08.031. Google Scholar

[20]

J. Qi and D. W. Wang, On analysis of chaotic synchronization in an advertising competition model,, Journal of Management Sciences in China, 7 (2004), 27. Google Scholar

[21]

J. Qi and D. W. Wang, Optimal control strategies for an advertising competing model,, Systems Engineering-Theory & Practice, 27 (2007), 39. Google Scholar

[22]

S. P. Sethi, Optimal control of the Vidale-Wolfe advertising model,, Operations Research, 21 (1973), 998. doi: 10.1287/opre.21.4.998. Google Scholar

[23]

S. P. Sethi, A. Prasad and X. L. He, Optimal advertising and pricing in a new-product adoption model,, Journal of Optimization Theory and Applications, 139 (2008), 351. doi: 10.1007/s10957-008-9472-5. Google Scholar

[24]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,, Springer Heidelberg, (2002). doi: 10.1007/978-0-387-21738-3. Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach to optimal control problems,, Longman Scientific and Technical, (1991). Google Scholar

[26]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 40 (1999), 314. doi: 10.1017/S0334270000010936. Google Scholar

[27]

M. L. Vidale and H. B. Wolfe, An operations-research study of sales response to advertising,, Operations Research, 5 (1957), 370. doi: 10.1287/opre.5.3.370. Google Scholar

[28]

Q. Wang and Z. Wu, A duopolistic model of dynamic competitive advertising,, European Journal of Operational Research, 128 (2001), 213. doi: 10.1016/S0377-2217(99)00346-X. Google Scholar

[29]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem,, Journal of Industrial Management and Optimization, 8 (2012), 485. doi: 10.3934/jimo.2012.8.485. Google Scholar

[30]

C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems,, Journal of Industrial and Management Optimization, 6 (2010), 895. doi: 10.3934/jimo.2010.6.895. Google Scholar

[31]

J. K. Zhang, Advertising Economics Practical Tutorial,, Shanghai Far East Publishers, (1998). Google Scholar

[1]

Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571

[2]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[3]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[4]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019080

[5]

Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991

[6]

Marcelo J. Villena, Mauricio Contreras. Global and local advertising strategies: A dynamic multi-market optimal control model. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1017-1048. doi: 10.3934/jimo.2018084

[7]

Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations. Conference Publications, 2003, 2003 (Special) : 610-617. doi: 10.3934/proc.2003.2003.610

[8]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[9]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[10]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[11]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[12]

Jason R. Scott, Stephen Campbell. Auxiliary signal design for failure detection in differential-algebraic equations. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 151-179. doi: 10.3934/naco.2014.4.151

[13]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[14]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[15]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066

[16]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[17]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[18]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[19]

Chao Deng, Haixiang Yao, Yan Chen. Optimal investment and risk control problems with delay for an insurer in defaultable market. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019070

[20]

Rong Liu, Feng-Qin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3603-3618. doi: 10.3934/dcdsb.2016112

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]