-
Previous Article
The optimal portfolios based on a modified safety-first rule with risk-free saving
- JIMO Home
- This Issue
-
Next Article
Discount-offering and demand-rejection decisions for substitutable products with different profit levels
A global optimization approach to fractional optimal control
1. | Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia |
2. | Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, WA 6845, Australia, Australia |
References:
[1] |
N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).
doi: 10.1142/6262. |
[2] |
Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.
doi: 10.1287/opre.19.1.57. |
[3] |
C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).
|
[4] |
H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.
doi: 10.1023/A,1013072027218. |
[5] |
I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., (). Google Scholar |
[6] |
I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.
doi: 10.1007/s10957-009-9540-5. |
[7] |
A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).
doi: 10.1007/978-3-642-46709-7. |
[8] |
B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).
|
[9] |
J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.
doi: 10.1007/BF02591908. |
[10] |
W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.
doi: 10.1287/mnsc.13.7.492. |
[11] |
W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994). Google Scholar |
[12] |
R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009). Google Scholar |
[13] |
R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.
|
[14] |
N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).
doi: 10.1007/978-3-642-56645-5. |
[15] |
R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).
doi: 10.1007/978-3-662-02947-3. |
[16] |
T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.
doi: 10.1007/BF02591871. |
[17] |
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990). Google Scholar |
[18] |
B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.
doi: 10.3934/jimo.2010.6.347. |
[19] |
H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.
doi: 10.1007/BF02283691. |
[20] |
Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102. Google Scholar |
[21] |
X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.
doi: 10.3934/naco.2011.1.361. |
[22] |
Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231. Google Scholar |
[23] |
H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).
doi: 10.1007/b101428. |
[24] |
S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.
doi: 10.1016/0377-2217(81)90272-1. |
[25] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).
|
[26] |
J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.
doi: 10.1080/03052150500066737. |
[27] |
A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.
doi: 10.3934/naco.2011.1.83. |
show all references
References:
[1] |
N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).
doi: 10.1142/6262. |
[2] |
Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.
doi: 10.1287/opre.19.1.57. |
[3] |
C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).
|
[4] |
H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.
doi: 10.1023/A,1013072027218. |
[5] |
I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., (). Google Scholar |
[6] |
I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.
doi: 10.1007/s10957-009-9540-5. |
[7] |
A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).
doi: 10.1007/978-3-642-46709-7. |
[8] |
B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).
|
[9] |
J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.
doi: 10.1007/BF02591908. |
[10] |
W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.
doi: 10.1287/mnsc.13.7.492. |
[11] |
W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994). Google Scholar |
[12] |
R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009). Google Scholar |
[13] |
R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.
|
[14] |
N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).
doi: 10.1007/978-3-642-56645-5. |
[15] |
R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).
doi: 10.1007/978-3-662-02947-3. |
[16] |
T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.
doi: 10.1007/BF02591871. |
[17] |
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990). Google Scholar |
[18] |
B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.
doi: 10.3934/jimo.2010.6.347. |
[19] |
H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.
doi: 10.1007/BF02283691. |
[20] |
Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102. Google Scholar |
[21] |
X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.
doi: 10.3934/naco.2011.1.361. |
[22] |
Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231. Google Scholar |
[23] |
H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).
doi: 10.1007/b101428. |
[24] |
S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.
doi: 10.1016/0377-2217(81)90272-1. |
[25] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).
|
[26] |
J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.
doi: 10.1080/03052150500066737. |
[27] |
A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.
doi: 10.3934/naco.2011.1.83. |
[1] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[2] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[3] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[4] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[5] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[6] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[7] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[8] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[9] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[10] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[11] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[12] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[13] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[14] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[15] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[16] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[17] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[18] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[19] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[20] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]