• Previous Article
    The optimal portfolios based on a modified safety-first rule with risk-free saving
  • JIMO Home
  • This Issue
  • Next Article
    Discount-offering and demand-rejection decisions for substitutable products with different profit levels
January  2016, 12(1): 73-82. doi: 10.3934/jimo.2016.12.73

A global optimization approach to fractional optimal control

1. 

Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia

2. 

Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, WA 6845, Australia, Australia

Received  February 2014 Revised  November 2014 Published  April 2015

In this paper, we consider a fractional optimal control problem governed by system of linear differential equations, where its cost function is expressed as the ratio of convex and concave functions. The problem is a hard nonconvex optimal control problem and application of Pontriyagin's principle does not always guarantee finding a global optimal control. Even this type of problems in a finite dimensional space is known as NP hard. This optimal control problem can, in principle, be solved by Dinkhelbach algorithm [10]. However, it leads to solving a sequence of hard D.C programming problems in its finite dimensional analogy. To overcome this difficulty, we introduce a reachable set for the linear system. In this way, the problem is reduced to a quasiconvex maximization problem in a finite dimensional space. Based on a global optimality condition, we propose an algorithm for solving this fractional optimal control problem and we show that the algorithm generates a sequence of local optimal controls with improved cost values. The proposed algorithm is then applied to several test problems, where the global optimal cost value is obtained for each case.
Citation: Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73
References:
[1]

N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).  doi: 10.1142/6262.  Google Scholar

[2]

Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.  doi: 10.1287/opre.19.1.57.  Google Scholar

[3]

C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).   Google Scholar

[4]

H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.  doi: 10.1023/A,1013072027218.  Google Scholar

[5]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., ().   Google Scholar

[6]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.  doi: 10.1007/s10957-009-9540-5.  Google Scholar

[7]

A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-642-46709-7.  Google Scholar

[8]

B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).   Google Scholar

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.  doi: 10.1007/BF02591908.  Google Scholar

[10]

W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[11]

W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994).   Google Scholar

[12]

R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009).   Google Scholar

[13]

R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.   Google Scholar

[14]

N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).  doi: 10.1007/978-3-642-56645-5.  Google Scholar

[15]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).  doi: 10.1007/978-3-662-02947-3.  Google Scholar

[16]

T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.  doi: 10.1007/BF02591871.  Google Scholar

[17]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990).   Google Scholar

[18]

B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.  doi: 10.3934/jimo.2010.6.347.  Google Scholar

[19]

H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.  doi: 10.1007/BF02283691.  Google Scholar

[20]

Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102.   Google Scholar

[21]

X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.  doi: 10.3934/naco.2011.1.361.  Google Scholar

[22]

Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231.   Google Scholar

[23]

H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).  doi: 10.1007/b101428.  Google Scholar

[24]

S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.  doi: 10.1016/0377-2217(81)90272-1.  Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).   Google Scholar

[26]

J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.  doi: 10.1080/03052150500066737.  Google Scholar

[27]

A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.  doi: 10.3934/naco.2011.1.83.  Google Scholar

show all references

References:
[1]

N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).  doi: 10.1142/6262.  Google Scholar

[2]

Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.  doi: 10.1287/opre.19.1.57.  Google Scholar

[3]

C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).   Google Scholar

[4]

H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.  doi: 10.1023/A,1013072027218.  Google Scholar

[5]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., ().   Google Scholar

[6]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.  doi: 10.1007/s10957-009-9540-5.  Google Scholar

[7]

A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-642-46709-7.  Google Scholar

[8]

B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).   Google Scholar

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.  doi: 10.1007/BF02591908.  Google Scholar

[10]

W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[11]

W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994).   Google Scholar

[12]

R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009).   Google Scholar

[13]

R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.   Google Scholar

[14]

N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).  doi: 10.1007/978-3-642-56645-5.  Google Scholar

[15]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).  doi: 10.1007/978-3-662-02947-3.  Google Scholar

[16]

T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.  doi: 10.1007/BF02591871.  Google Scholar

[17]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990).   Google Scholar

[18]

B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.  doi: 10.3934/jimo.2010.6.347.  Google Scholar

[19]

H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.  doi: 10.1007/BF02283691.  Google Scholar

[20]

Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102.   Google Scholar

[21]

X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.  doi: 10.3934/naco.2011.1.361.  Google Scholar

[22]

Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231.   Google Scholar

[23]

H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).  doi: 10.1007/b101428.  Google Scholar

[24]

S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.  doi: 10.1016/0377-2217(81)90272-1.  Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).   Google Scholar

[26]

J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.  doi: 10.1080/03052150500066737.  Google Scholar

[27]

A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.  doi: 10.3934/naco.2011.1.83.  Google Scholar

[1]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[2]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[3]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[4]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[5]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[6]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[7]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[8]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020002

[9]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[10]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[11]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[12]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[13]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[14]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[15]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[16]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[17]

Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 55-70. doi: 10.3934/jimo.2018140

[18]

Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363

[19]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[20]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3821-3838. doi: 10.3934/dcdsb.2017192

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]