• Previous Article
    The optimal portfolios based on a modified safety-first rule with risk-free saving
  • JIMO Home
  • This Issue
  • Next Article
    Discount-offering and demand-rejection decisions for substitutable products with different profit levels
January  2016, 12(1): 73-82. doi: 10.3934/jimo.2016.12.73

A global optimization approach to fractional optimal control

1. 

Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia

2. 

Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, WA 6845, Australia, Australia

Received  February 2014 Revised  November 2014 Published  April 2015

In this paper, we consider a fractional optimal control problem governed by system of linear differential equations, where its cost function is expressed as the ratio of convex and concave functions. The problem is a hard nonconvex optimal control problem and application of Pontriyagin's principle does not always guarantee finding a global optimal control. Even this type of problems in a finite dimensional space is known as NP hard. This optimal control problem can, in principle, be solved by Dinkhelbach algorithm [10]. However, it leads to solving a sequence of hard D.C programming problems in its finite dimensional analogy. To overcome this difficulty, we introduce a reachable set for the linear system. In this way, the problem is reduced to a quasiconvex maximization problem in a finite dimensional space. Based on a global optimality condition, we propose an algorithm for solving this fractional optimal control problem and we show that the algorithm generates a sequence of local optimal controls with improved cost values. The proposed algorithm is then applied to several test problems, where the global optimal cost value is obtained for each case.
Citation: Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73
References:
[1]

N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).  doi: 10.1142/6262.  Google Scholar

[2]

Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.  doi: 10.1287/opre.19.1.57.  Google Scholar

[3]

C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).   Google Scholar

[4]

H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.  doi: 10.1023/A,1013072027218.  Google Scholar

[5]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., ().   Google Scholar

[6]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.  doi: 10.1007/s10957-009-9540-5.  Google Scholar

[7]

A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-642-46709-7.  Google Scholar

[8]

B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).   Google Scholar

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.  doi: 10.1007/BF02591908.  Google Scholar

[10]

W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[11]

W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994).   Google Scholar

[12]

R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009).   Google Scholar

[13]

R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.   Google Scholar

[14]

N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).  doi: 10.1007/978-3-642-56645-5.  Google Scholar

[15]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).  doi: 10.1007/978-3-662-02947-3.  Google Scholar

[16]

T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.  doi: 10.1007/BF02591871.  Google Scholar

[17]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990).   Google Scholar

[18]

B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.  doi: 10.3934/jimo.2010.6.347.  Google Scholar

[19]

H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.  doi: 10.1007/BF02283691.  Google Scholar

[20]

Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102.   Google Scholar

[21]

X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.  doi: 10.3934/naco.2011.1.361.  Google Scholar

[22]

Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231.   Google Scholar

[23]

H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).  doi: 10.1007/b101428.  Google Scholar

[24]

S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.  doi: 10.1016/0377-2217(81)90272-1.  Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).   Google Scholar

[26]

J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.  doi: 10.1080/03052150500066737.  Google Scholar

[27]

A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.  doi: 10.3934/naco.2011.1.83.  Google Scholar

show all references

References:
[1]

N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).  doi: 10.1142/6262.  Google Scholar

[2]

Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.  doi: 10.1287/opre.19.1.57.  Google Scholar

[3]

C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).   Google Scholar

[4]

H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.  doi: 10.1023/A,1013072027218.  Google Scholar

[5]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., ().   Google Scholar

[6]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.  doi: 10.1007/s10957-009-9540-5.  Google Scholar

[7]

A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-642-46709-7.  Google Scholar

[8]

B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).   Google Scholar

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.  doi: 10.1007/BF02591908.  Google Scholar

[10]

W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[11]

W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994).   Google Scholar

[12]

R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009).   Google Scholar

[13]

R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.   Google Scholar

[14]

N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).  doi: 10.1007/978-3-642-56645-5.  Google Scholar

[15]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).  doi: 10.1007/978-3-662-02947-3.  Google Scholar

[16]

T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.  doi: 10.1007/BF02591871.  Google Scholar

[17]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990).   Google Scholar

[18]

B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.  doi: 10.3934/jimo.2010.6.347.  Google Scholar

[19]

H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.  doi: 10.1007/BF02283691.  Google Scholar

[20]

Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102.   Google Scholar

[21]

X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.  doi: 10.3934/naco.2011.1.361.  Google Scholar

[22]

Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231.   Google Scholar

[23]

H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).  doi: 10.1007/b101428.  Google Scholar

[24]

S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.  doi: 10.1016/0377-2217(81)90272-1.  Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).   Google Scholar

[26]

J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.  doi: 10.1080/03052150500066737.  Google Scholar

[27]

A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.  doi: 10.3934/naco.2011.1.83.  Google Scholar

[1]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[6]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[7]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[8]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[11]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[12]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[13]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[14]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[15]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[16]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[17]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[18]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[19]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]