- Previous Article
- JIMO Home
- This Issue
-
Next Article
Approximate algorithms for unrelated machine scheduling to minimize makespan
VISUAL MISER: An efficient user-friendly visual program for solving optimal control problems
1. | School of Automation Engineering, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, 611731, China |
2. | Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U 1987, Perth, W.A. 6845 |
3. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845 |
4. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845 |
5. | School of Business, Central South University, South Lushan Road, Changsha, Hunan, China |
6. | Department of Mathematics, University of Western Australia, Nedlands, Western Australia 6009, Australia |
References:
[1] |
World Scientific, Singapore, 2006.
doi: 10.1142/6262. |
[2] |
McGraw-Hill, 1966. |
[3] |
Differential Equations and Nonlinear Mechanics, Volume 2007. |
[4] |
Orlands, Florida, Academic Press, 1977. |
[5] |
Hemisphere Publishing, DC, 1975. |
[6] |
C. Buskens, NUDOCCCS, FORTRAN-Subroutine NUDOCCCS (Numerical Discretisation method for Optimal Control problems with Constraints in Controls and States),, 2010. , (). Google Scholar |
[7] |
Journal of Optimization Theory and Applications, 107 (2000), 505-527.
doi: 10.1023/A:1026491014283. |
[8] |
Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4613-8165-5. |
[9] |
Control Engineering Practice, 20 (2002), 618-628.
doi: 10.1016/j.conengprac.2012.03.001. |
[10] |
Springer, The Netherlands, 2005. |
[11] |
Chemical Engineering Science, 54 (1999), 2715-2720.
doi: 10.1016/S0009-2509(98)00375-3. |
[12] |
M. E. Fisher and L. S. Jennings, MATLAB MISER,, , (): 483. Google Scholar |
[13] |
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, User's Guide for NPSOL 5.0: Fortran package for nonlinear programming,, 1986. , (). Google Scholar |
[14] |
Research Notes in Mathematics, Vol. 47, Pitman (Advance Publishing Program), London, 1981. |
[15] |
Automatica, 24 (1988), 3-18.
doi: 10.1016/0005-1098(88)90003-9. |
[16] |
Journal of Optimization Theory and Applications, 26 (1978), 395-425.
doi: 10.1007/BF00933463. |
[17] |
Pacific Journal of Optimization, 6 (2010), 3157-3175. |
[18] |
Annals of Operations Research, 98 (2000), 65-87.
doi: 10.1023/A:1019235819716. |
[19] |
Journal of the Franklin Institute, 339 (2002), 479-498.
doi: 10.1016/S0016-0032(02)00028-5. |
[20] |
the University of Western Australia, 2004. Google Scholar |
[21] |
Automatica, 26 (1990), 371-375.
doi: 10.1016/0005-1098(90)90131-Z. |
[22] |
Journal of Industrial and Management Optimization, 8 (2012), 591-609.
doi: 10.3934/jimo.2012.8.591. |
[23] |
Automatica, 48 (2012), 660-665.
doi: 10.1016/j.automatica.2012.01.019. |
[24] |
Journal of Optimization Theory and Applications, 154 (2012), 30-53.
doi: 10.1007/s10957-012-0006-9. |
[25] |
Journal of Optimization Theory and Applications, 134 (2007), 191-206.
doi: 10.1007/s10957-007-9217-x. |
[26] |
SIAM Journal on Numerical Analysis, in press, 2008.
doi: 10.1137/060675034. |
[27] |
North Holland, 1991. |
[28] |
Journal of Optimization Theory and Applications, 49 (1986), 47-63.
doi: 10.1007/BF00939247. |
[29] |
Applied Mathematics and Computation, 224 (2013), 866-875.
doi: 10.1016/j.amc.2013.08.092. |
[30] |
Journal of Optimization Theory and Applications, 151 (2011), 260-291.
doi: 10.1007/s10957-011-9904-5. |
[31] |
Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1101-1117.
doi: 10.3934/dcdsb.2011.16.1101. |
[32] |
International Journal of Innovative Computing, Information and Control, 6 (2010), 521-532. Google Scholar |
[33] |
Australian and New Zealand Industrial and Applied Mathematics Journal, 51 (2009), 162-177.
doi: 10.1017/S1446181110000040. |
[34] |
Acta Astronautica, 74 (2011), 131-140.
doi: 10.1016/j.actaastro.2011.12.021. |
[35] |
Cybernetics and Systems, 22 (1991), 1-16.
doi: 10.1080/01969729108902267. |
[36] |
Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275. |
[37] |
Automatica, 45 (2009), 973-980.
doi: 10.1016/j.automatica.2008.10.031. |
[38] |
Automatica, 45 (2009), 2250-2257.
doi: 10.1016/j.automatica.2009.05.029. |
[39] |
IEEE Transactions on Automatic Control, 54 (2009), 2455-2460.
doi: 10.1109/TAC.2009.2029310. |
[40] |
Numerical Algebra, Control and Optimization, 2 (2012), 571-599.
doi: 10.3934/naco.2012.2.571. |
[41] |
Automatica, 49 (2013), 2652-2664.
doi: 10.1016/j.automatica.2013.05.027. |
[42] |
Pacific Journal of Optimization, 10 (2014), 537-560. |
[43] |
Chapman & Hall/CRC, Boca Raton, 2000.
doi: 10.1201/9781420036022. |
[44] |
Chemical Engineering Journal, 75 (1999), 1-9. Google Scholar |
[45] |
World Scientific, 1994, 185pp. Google Scholar |
[46] |
MATLAB - The Language of Technical Computing, http://mathworks.com/products/matlab/,, 2008., (). Google Scholar |
[47] |
Optimal Control Applications and Methods, 19 (1998), 185-203.
doi: 10.1002/(SICI)1099-1514(199805/06)19:3<185::AID-OCA627>3.0.CO;2-E. |
[48] |
Numerical Algorithms, 42 (2006), 165-169.
doi: 10.1007/s11075-006-9035-5. |
[49] |
Journal of Mathematical Analysis and Applications, 119 (1986), 21-54.
doi: 10.1016/0022-247X(86)90142-3. |
[50] |
Journal of Optimization Theory and Applications, 100 (1999), 1-13. Google Scholar |
[51] |
R. Petzold and A. C. Hindmarsh, LSODA, Ordinary Differential Equation Solver for Stiff or Non-Stiff System,, 2005., (). Google Scholar |
[52] |
CRC Press, 1987. Google Scholar |
[53] |
Journal of Industrial and Management Optimization, 3 (2007), 331-348.
doi: 10.3934/jimo.2007.3.585. |
[54] |
Automatica, 18 (1982), 257-266.
doi: 10.1016/0005-1098(82)90086-3. |
[55] |
K. Schittkowski, NLPQLP: A new fortran implementation of a sequential quadratic programming algorithm for parallel computing,, 2010., (). Google Scholar |
[56] |
A. L. Schwartz, RIOTS-A Matlab toolbox for solving general optimal control problems,, 2008. , (). Google Scholar |
[57] |
Journal of Optimization Theory and Applications, 46 (1985), 265-293.
doi: 10.1007/BF00939285. |
[58] |
Springer, 2006. |
[59] |
Longman Scientific and Technical, England, 1991. |
[60] |
Journal of Australian Mathematical Society, Series B, 40 (1999), 314-335.
doi: 10.1017/S0334270000010936. |
[61] |
Automatica, 29 (1993), 789-792.
doi: 10.1016/0005-1098(93)90076-6. |
[62] |
Journal of Australian Mathematical Society, Series B, 33 (1992), 517-530.
doi: 10.1017/S0334270000007207. |
[63] |
IMA - Journal of Mathematical Control and Information, 6 (1989), 81-95.
doi: 10.1093/imamci/6.1.81. |
[64] |
Journal of Optimization Theory and Applications, 56 (1988), 145-156.
doi: 10.1007/BF00938530. |
[65] |
International Journal of Mechanical Sciences, 12 (1970), 973-983.
doi: 10.1016/0020-7403(70)90037-8. |
[66] |
in Proc. 2nd European Congress on Intelligent Techniques and Soft Computing (EUFIT) (H.J. Zimmermann ed.), Aachen, Germany, pp. 347-351, 1994. Google Scholar |
[67] |
Journal of Industrial and Management Optimization, 2 (2006), 435-450.
doi: 10.3934/jimo.2006.2.435. |
[68] |
Institute for Systems Research, University of Maryland, Technical Report SRC-TR-92-107r5, College Park, MD 20742. Google Scholar |
show all references
References:
[1] |
World Scientific, Singapore, 2006.
doi: 10.1142/6262. |
[2] |
McGraw-Hill, 1966. |
[3] |
Differential Equations and Nonlinear Mechanics, Volume 2007. |
[4] |
Orlands, Florida, Academic Press, 1977. |
[5] |
Hemisphere Publishing, DC, 1975. |
[6] |
C. Buskens, NUDOCCCS, FORTRAN-Subroutine NUDOCCCS (Numerical Discretisation method for Optimal Control problems with Constraints in Controls and States),, 2010. , (). Google Scholar |
[7] |
Journal of Optimization Theory and Applications, 107 (2000), 505-527.
doi: 10.1023/A:1026491014283. |
[8] |
Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4613-8165-5. |
[9] |
Control Engineering Practice, 20 (2002), 618-628.
doi: 10.1016/j.conengprac.2012.03.001. |
[10] |
Springer, The Netherlands, 2005. |
[11] |
Chemical Engineering Science, 54 (1999), 2715-2720.
doi: 10.1016/S0009-2509(98)00375-3. |
[12] |
M. E. Fisher and L. S. Jennings, MATLAB MISER,, , (): 483. Google Scholar |
[13] |
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, User's Guide for NPSOL 5.0: Fortran package for nonlinear programming,, 1986. , (). Google Scholar |
[14] |
Research Notes in Mathematics, Vol. 47, Pitman (Advance Publishing Program), London, 1981. |
[15] |
Automatica, 24 (1988), 3-18.
doi: 10.1016/0005-1098(88)90003-9. |
[16] |
Journal of Optimization Theory and Applications, 26 (1978), 395-425.
doi: 10.1007/BF00933463. |
[17] |
Pacific Journal of Optimization, 6 (2010), 3157-3175. |
[18] |
Annals of Operations Research, 98 (2000), 65-87.
doi: 10.1023/A:1019235819716. |
[19] |
Journal of the Franklin Institute, 339 (2002), 479-498.
doi: 10.1016/S0016-0032(02)00028-5. |
[20] |
the University of Western Australia, 2004. Google Scholar |
[21] |
Automatica, 26 (1990), 371-375.
doi: 10.1016/0005-1098(90)90131-Z. |
[22] |
Journal of Industrial and Management Optimization, 8 (2012), 591-609.
doi: 10.3934/jimo.2012.8.591. |
[23] |
Automatica, 48 (2012), 660-665.
doi: 10.1016/j.automatica.2012.01.019. |
[24] |
Journal of Optimization Theory and Applications, 154 (2012), 30-53.
doi: 10.1007/s10957-012-0006-9. |
[25] |
Journal of Optimization Theory and Applications, 134 (2007), 191-206.
doi: 10.1007/s10957-007-9217-x. |
[26] |
SIAM Journal on Numerical Analysis, in press, 2008.
doi: 10.1137/060675034. |
[27] |
North Holland, 1991. |
[28] |
Journal of Optimization Theory and Applications, 49 (1986), 47-63.
doi: 10.1007/BF00939247. |
[29] |
Applied Mathematics and Computation, 224 (2013), 866-875.
doi: 10.1016/j.amc.2013.08.092. |
[30] |
Journal of Optimization Theory and Applications, 151 (2011), 260-291.
doi: 10.1007/s10957-011-9904-5. |
[31] |
Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1101-1117.
doi: 10.3934/dcdsb.2011.16.1101. |
[32] |
International Journal of Innovative Computing, Information and Control, 6 (2010), 521-532. Google Scholar |
[33] |
Australian and New Zealand Industrial and Applied Mathematics Journal, 51 (2009), 162-177.
doi: 10.1017/S1446181110000040. |
[34] |
Acta Astronautica, 74 (2011), 131-140.
doi: 10.1016/j.actaastro.2011.12.021. |
[35] |
Cybernetics and Systems, 22 (1991), 1-16.
doi: 10.1080/01969729108902267. |
[36] |
Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275. |
[37] |
Automatica, 45 (2009), 973-980.
doi: 10.1016/j.automatica.2008.10.031. |
[38] |
Automatica, 45 (2009), 2250-2257.
doi: 10.1016/j.automatica.2009.05.029. |
[39] |
IEEE Transactions on Automatic Control, 54 (2009), 2455-2460.
doi: 10.1109/TAC.2009.2029310. |
[40] |
Numerical Algebra, Control and Optimization, 2 (2012), 571-599.
doi: 10.3934/naco.2012.2.571. |
[41] |
Automatica, 49 (2013), 2652-2664.
doi: 10.1016/j.automatica.2013.05.027. |
[42] |
Pacific Journal of Optimization, 10 (2014), 537-560. |
[43] |
Chapman & Hall/CRC, Boca Raton, 2000.
doi: 10.1201/9781420036022. |
[44] |
Chemical Engineering Journal, 75 (1999), 1-9. Google Scholar |
[45] |
World Scientific, 1994, 185pp. Google Scholar |
[46] |
MATLAB - The Language of Technical Computing, http://mathworks.com/products/matlab/,, 2008., (). Google Scholar |
[47] |
Optimal Control Applications and Methods, 19 (1998), 185-203.
doi: 10.1002/(SICI)1099-1514(199805/06)19:3<185::AID-OCA627>3.0.CO;2-E. |
[48] |
Numerical Algorithms, 42 (2006), 165-169.
doi: 10.1007/s11075-006-9035-5. |
[49] |
Journal of Mathematical Analysis and Applications, 119 (1986), 21-54.
doi: 10.1016/0022-247X(86)90142-3. |
[50] |
Journal of Optimization Theory and Applications, 100 (1999), 1-13. Google Scholar |
[51] |
R. Petzold and A. C. Hindmarsh, LSODA, Ordinary Differential Equation Solver for Stiff or Non-Stiff System,, 2005., (). Google Scholar |
[52] |
CRC Press, 1987. Google Scholar |
[53] |
Journal of Industrial and Management Optimization, 3 (2007), 331-348.
doi: 10.3934/jimo.2007.3.585. |
[54] |
Automatica, 18 (1982), 257-266.
doi: 10.1016/0005-1098(82)90086-3. |
[55] |
K. Schittkowski, NLPQLP: A new fortran implementation of a sequential quadratic programming algorithm for parallel computing,, 2010., (). Google Scholar |
[56] |
A. L. Schwartz, RIOTS-A Matlab toolbox for solving general optimal control problems,, 2008. , (). Google Scholar |
[57] |
Journal of Optimization Theory and Applications, 46 (1985), 265-293.
doi: 10.1007/BF00939285. |
[58] |
Springer, 2006. |
[59] |
Longman Scientific and Technical, England, 1991. |
[60] |
Journal of Australian Mathematical Society, Series B, 40 (1999), 314-335.
doi: 10.1017/S0334270000010936. |
[61] |
Automatica, 29 (1993), 789-792.
doi: 10.1016/0005-1098(93)90076-6. |
[62] |
Journal of Australian Mathematical Society, Series B, 33 (1992), 517-530.
doi: 10.1017/S0334270000007207. |
[63] |
IMA - Journal of Mathematical Control and Information, 6 (1989), 81-95.
doi: 10.1093/imamci/6.1.81. |
[64] |
Journal of Optimization Theory and Applications, 56 (1988), 145-156.
doi: 10.1007/BF00938530. |
[65] |
International Journal of Mechanical Sciences, 12 (1970), 973-983.
doi: 10.1016/0020-7403(70)90037-8. |
[66] |
in Proc. 2nd European Congress on Intelligent Techniques and Soft Computing (EUFIT) (H.J. Zimmermann ed.), Aachen, Germany, pp. 347-351, 1994. Google Scholar |
[67] |
Journal of Industrial and Management Optimization, 2 (2006), 435-450.
doi: 10.3934/jimo.2006.2.435. |
[68] |
Institute for Systems Research, University of Maryland, Technical Report SRC-TR-92-107r5, College Park, MD 20742. Google Scholar |
[1] |
Hui Xu, Guangbin Cai, Xiaogang Yang, Erliang Yao, Xiaofeng Li. Stereo visual odometry based on dynamic and static features division. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021059 |
[2] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[3] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[6] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[7] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[8] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[9] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[10] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[11] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
[12] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[13] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[14] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[15] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[16] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[17] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[18] |
Xianbang Chen, Yang Liu, Bin Li. Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1639-1661. doi: 10.3934/jimo.2020038 |
[19] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[20] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]