- Previous Article
- JIMO Home
- This Issue
-
Next Article
Approximate algorithms for unrelated machine scheduling to minimize makespan
VISUAL MISER: An efficient user-friendly visual program for solving optimal control problems
1. | School of Automation Engineering, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, 611731, China |
2. | Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U 1987, Perth, W.A. 6845 |
3. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845 |
4. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845 |
5. | School of Business, Central South University, South Lushan Road, Changsha, Hunan, China |
6. | Department of Mathematics, University of Western Australia, Nedlands, Western Australia 6009, Australia |
References:
[1] |
N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).
doi: 10.1142/6262. |
[2] |
M. Athans and P. L. Falb, Optimal Control,, McGraw-Hill, (1966).
|
[3] |
V. Azhmyakov, Optimal control of mechanical systems,, Differential Equations and Nonlinear Mechanics, (2007).
|
[4] |
R. Bellman and R. E. Dreyfus, Dynamic Programming and Modern Control Theory,, Orlands, (1977).
|
[5] |
A. E. Jr. Bryson and Y. C. Ho, Applied Optimal Control,, Hemisphere Publishing, (1975).
|
[6] |
C. Buskens, NUDOCCCS, FORTRAN-Subroutine NUDOCCCS (Numerical Discretisation method for Optimal Control problems with Constraints in Controls and States),, 2010. , (). Google Scholar |
[7] |
C. Buskens and H. Maurer, Nonlinear programming methods for real-time control of an industrial robot,, Journal of Optimization Theory and Applications, 107 (2000), 505.
doi: 10.1023/A:1026491014283. |
[8] |
L. Cesari, Optimization: Theory and Applications,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4613-8165-5. |
[9] |
Q. Q. Chai, C. H. Yang, K. L. Teo and W. H. Gui, Optimal control of an industrial-scale evaporation process: Sodium aluminate solution,, Control Engineering Practice, 20 (2002), 618.
doi: 10.1016/j.conengprac.2012.03.001. |
[10] |
B. D. Craven and S. M. N. Islam, Optimization in Economics and Finance,, Springer, (2005).
|
[11] |
M. Fikar, M. A. Latifi and Y. Creff, Optimal Changeover Profiles for an Industrial Depropanizer,, Chemical Engineering Science, 54 (1999), 2715.
doi: 10.1016/S0009-2509(98)00375-3. |
[12] |
M. E. Fisher and L. S. Jennings, MATLAB MISER,, , (): 483. Google Scholar |
[13] |
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, User's Guide for NPSOL 5.0: Fortran package for nonlinear programming,, 1986. , (). Google Scholar |
[14] |
W. E. Gruver and E. Sachs, Algorithmic Methods in Optimal Control,, Research Notes in Mathematics, (1981).
|
[15] |
C. J. Goh and K. L. Teo, Control parameterization: a unified approach to optimal control problems with general constraints,, Automatica, 24 (1988), 3.
doi: 10.1016/0005-1098(88)90003-9. |
[16] |
S. Gonzalez and A. Miele, Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions,, Journal of Optimization Theory and Applications, 26 (1978), 395.
doi: 10.1007/BF00933463. |
[17] |
G. R. Duan, D. K. Gu and B. Li, Optimal control for final approach of rendezvous with non-cooperative target,, Pacific Journal of Optimization, 6 (2010), 3157.
|
[18] |
P. Howlett, The optimal control of a train,, Annals of Operations Research, 98 (2000), 65.
doi: 10.1023/A:1019235819716. |
[19] |
H. Jaddu, Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials,, Journal of the Franklin Institute, 339 (2002), 479.
doi: 10.1016/S0016-0032(02)00028-5. |
[20] |
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3.3 Optimal Control Software Version: Theory and User Manual,, the University of Western Australia, (2004). Google Scholar |
[21] |
L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems,, Automatica, 26 (1990), 371.
doi: 10.1016/0005-1098(90)90131-Z. |
[22] |
C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.
doi: 10.3934/jimo.2012.8.591. |
[23] |
C. Jiang, K. L. Teo and G. R. Duan, A suboptimal feedback control for nonlinear time-varying systems with continuous inequality constraints,, Automatica, 48 (2012), 660.
doi: 10.1016/j.automatica.2012.01.019. |
[24] |
C. Jiang, Q. Lin, C. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, Journal of Optimization Theory and Applications, 154 (2012), 30.
doi: 10.1007/s10957-012-0006-9. |
[25] |
C. Y. Kaya and J. M. Martnez, Euler discretization and inexact restoration for optimal control,, Journal of Optimization Theory and Applications, 134 (2007), 191.
doi: 10.1007/s10957-007-9217-x. |
[26] |
C. Y. Kaya and J. L. Noakes, Leapfrog for Optimal Control,, SIAM Journal on Numerical Analysis, (2008).
doi: 10.1137/060675034. |
[27] |
M. I. Kamien and N. L. Schwartz, Dynamic Optimization - The Calculus of Variations and Optimal Control in Economics and Management,, North Holland, (1991).
|
[28] |
T. T. Lam and Y. Bayazitoglu, Application of the sequential gradient restoration algorithm to terminal convective instability problems,, Journal of Optimization Theory and Applications, 49 (1986), 47.
doi: 10.1007/BF00939247. |
[29] |
B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles,, Applied Mathematics and Computation, 224 (2013), 866.
doi: 10.1016/j.amc.2013.08.092. |
[30] |
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260.
doi: 10.1007/s10957-011-9904-5. |
[31] |
B. Li, K. L. Teo, C. C. Lim and G. R. Duan, An optimal PID controller design for nonlinear constrained optimal control problems,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1101.
doi: 10.3934/dcdsb.2011.16.1101. |
[32] |
B. Li, K. L. Teo and G. R. Duan, Optimal control computation for discrete time time-delayed optimal control problem with all-time-step inequality constraints,, International Journal of Innovative Computing, 6 (2010), 521. Google Scholar |
[33] |
B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minimax optimal control problems with applications,, Australian and New Zealand Industrial and Applied Mathematics Journal, 51 (2009), 162.
doi: 10.1017/S1446181110000040. |
[34] |
C. J. Li, K. L Teo, B. Li and G. F. Ma, A constrained optimal pid-like controller design for spacecraft attitude stabilization,, Acta Astronautica, 74 (2011), 131.
doi: 10.1016/j.actaastro.2011.12.021. |
[35] |
C. C. Lim and K. L. Teo, Optimal insulin infusion control to a mathematical blood glucoregulatory model with fuzzy parameters,, Cybernetics and Systems, 22 (1991), 1.
doi: 10.1080/01969729108902267. |
[36] |
Q. Lin, R. Loxton and K. L. Teo, The control parameterization for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275.
doi: 10.3934/jimo.2014.10.275. |
[37] |
R. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter,, Automatica, 45 (2009), 973.
doi: 10.1016/j.automatica.2008.10.031. |
[38] |
R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250.
doi: 10.1016/j.automatica.2009.05.029. |
[39] |
R. Loxton, K. L. Teo, and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.
doi: 10.1109/TAC.2009.2029310. |
[40] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571.
doi: 10.3934/naco.2012.2.571. |
[41] |
R. Loxton, Q. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control,, Automatica, 49 (2013), 2652.
doi: 10.1016/j.automatica.2013.05.027. |
[42] |
R. Loxton, Q. Lin and K. L. Teo, Switching time optimization for nonlinear switched systems: Direct optimization and the time scaling transformation,, Pacific Journal of Optimization, 10 (2014), 537.
|
[43] |
R. Luus, Iterative Dynamic Programming,, Chapman & Hall/CRC, (2000).
doi: 10.1201/9781420036022. |
[44] |
R. Luus and O. N. Okongwu, Towards practical optimal contorl of batch reactors,, Chemical Engineering Journal, 75 (1999), 1. Google Scholar |
[45] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994). Google Scholar |
[46] |
MATLAB - The Language of Technical Computing, http://mathworks.com/products/matlab/,, 2008., (). Google Scholar |
[47] |
H. Maurer, C. Buskens and G. Feichtinger, Solution techniques for periodic control problems: a case study in production planning,, Optimal Control Applications and Methods, 19 (1998), 185.
doi: 10.1002/(SICI)1099-1514(199805/06)19:3<185::AID-OCA627>3.0.CO;2-E. |
[48] |
H. H. Mehne and A. H. Borzabadi, A numerical method for solving optimal control problems using state parametrization,, Numerical Algorithms, 42 (2006), 165.
doi: 10.1007/s11075-006-9035-5. |
[49] |
A. Miele and T. Wang, Primal-dual properties of sequential gradient-restoration algorithms for optimal control problems, Part 2, General problem,, Journal of Mathematical Analysis and Applications, 119 (1986), 21.
doi: 10.1016/0022-247X(86)90142-3. |
[50] |
H. J. Oberle and B. Sothmann, Numerical computation of optimal feed rates for a fed-batch fermentation model,, Journal of Optimization Theory and Applications, 100 (1999), 1. Google Scholar |
[51] |
R. Petzold and A. C. Hindmarsh, LSODA, Ordinary Differential Equation Solver for Stiff or Non-Stiff System,, 2005., (). Google Scholar |
[52] |
L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze and E. F. Mischenko, Mathematical Theory of Optimal Processes,, CRC Press, (1987). Google Scholar |
[53] |
V. Rehbock and I. Livk, Optimal control of a batch crystallization process,, Journal of Industrial and Management Optimization, 3 (2007), 331.
doi: 10.3934/jimo.2007.3.585. |
[54] |
Y. Sakawa and Y. Shindo, Optimal control of container cranes,, Automatica, 18 (1982), 257.
doi: 10.1016/0005-1098(82)90086-3. |
[55] |
K. Schittkowski, NLPQLP: A new fortran implementation of a sequential quadratic programming algorithm for parallel computing,, 2010., (). Google Scholar |
[56] |
A. L. Schwartz, RIOTS-A Matlab toolbox for solving general optimal control problems,, 2008. , (). Google Scholar |
[57] |
Y. Shindo and Y. Sakawa, Local convergence of an algorithm for solving optimal control problems,, Journal of Optimization Theory and Applications, 46 (1985), 265.
doi: 10.1007/BF00939285. |
[58] |
W. Sun and Y. X. Yuan, Optimization Theory and Methods,, Springer, (2006).
|
[59] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Longman Scientific and Technical, (1991).
|
[60] |
K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, Journal of Australian Mathematical Society, 40 (1999), 314.
doi: 10.1017/S0334270000010936. |
[61] |
K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems,, Automatica, 29 (1993), 789.
doi: 10.1016/0005-1098(93)90076-6. |
[62] |
K. L. Teo, and K. H. Wong, Nonlinearly constrained optimal control problems,, Journal of Australian Mathematical Society, 33 (1992), 517.
doi: 10.1017/S0334270000007207. |
[63] |
K. L. Teo, C. J. Goh and C. C. Lim, A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free,, IMA - Journal of Mathematical Control and Information, 6 (1989), 81.
doi: 10.1093/imamci/6.1.81. |
[64] |
K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering,, Journal of Optimization Theory and Applications, 56 (1988), 145.
doi: 10.1007/BF00938530. |
[65] |
N. S. Trahair and J. R. Booker, Optimum elastic columns,, International Journal of Mechanical Sciences, 12 (1970), 973.
doi: 10.1016/0020-7403(70)90037-8. |
[66] |
O. von Stryk, Optimization of dynamic systems in industrial applications,, in Proc. 2nd European Congress on Intelligent Techniques and Soft Computing (EUFIT) (H.J. Zimmermann ed.), (1994), 347. Google Scholar |
[67] |
C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.
doi: 10.3934/jimo.2006.2.435. |
[68] |
J. L. Zhou and A. Tits, User's guide for FFSQP version 3.7: A Fortran code for solving optimization programs, possibly minimax,with general inequality constraints and linear equality constraints, generating feasible iterates, (1997),, Institute for Systems Research, (2074), 92. Google Scholar |
show all references
References:
[1] |
N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).
doi: 10.1142/6262. |
[2] |
M. Athans and P. L. Falb, Optimal Control,, McGraw-Hill, (1966).
|
[3] |
V. Azhmyakov, Optimal control of mechanical systems,, Differential Equations and Nonlinear Mechanics, (2007).
|
[4] |
R. Bellman and R. E. Dreyfus, Dynamic Programming and Modern Control Theory,, Orlands, (1977).
|
[5] |
A. E. Jr. Bryson and Y. C. Ho, Applied Optimal Control,, Hemisphere Publishing, (1975).
|
[6] |
C. Buskens, NUDOCCCS, FORTRAN-Subroutine NUDOCCCS (Numerical Discretisation method for Optimal Control problems with Constraints in Controls and States),, 2010. , (). Google Scholar |
[7] |
C. Buskens and H. Maurer, Nonlinear programming methods for real-time control of an industrial robot,, Journal of Optimization Theory and Applications, 107 (2000), 505.
doi: 10.1023/A:1026491014283. |
[8] |
L. Cesari, Optimization: Theory and Applications,, Springer-Verlag, (1983).
doi: 10.1007/978-1-4613-8165-5. |
[9] |
Q. Q. Chai, C. H. Yang, K. L. Teo and W. H. Gui, Optimal control of an industrial-scale evaporation process: Sodium aluminate solution,, Control Engineering Practice, 20 (2002), 618.
doi: 10.1016/j.conengprac.2012.03.001. |
[10] |
B. D. Craven and S. M. N. Islam, Optimization in Economics and Finance,, Springer, (2005).
|
[11] |
M. Fikar, M. A. Latifi and Y. Creff, Optimal Changeover Profiles for an Industrial Depropanizer,, Chemical Engineering Science, 54 (1999), 2715.
doi: 10.1016/S0009-2509(98)00375-3. |
[12] |
M. E. Fisher and L. S. Jennings, MATLAB MISER,, , (): 483. Google Scholar |
[13] |
P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, User's Guide for NPSOL 5.0: Fortran package for nonlinear programming,, 1986. , (). Google Scholar |
[14] |
W. E. Gruver and E. Sachs, Algorithmic Methods in Optimal Control,, Research Notes in Mathematics, (1981).
|
[15] |
C. J. Goh and K. L. Teo, Control parameterization: a unified approach to optimal control problems with general constraints,, Automatica, 24 (1988), 3.
doi: 10.1016/0005-1098(88)90003-9. |
[16] |
S. Gonzalez and A. Miele, Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions,, Journal of Optimization Theory and Applications, 26 (1978), 395.
doi: 10.1007/BF00933463. |
[17] |
G. R. Duan, D. K. Gu and B. Li, Optimal control for final approach of rendezvous with non-cooperative target,, Pacific Journal of Optimization, 6 (2010), 3157.
|
[18] |
P. Howlett, The optimal control of a train,, Annals of Operations Research, 98 (2000), 65.
doi: 10.1023/A:1019235819716. |
[19] |
H. Jaddu, Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials,, Journal of the Franklin Institute, 339 (2002), 479.
doi: 10.1016/S0016-0032(02)00028-5. |
[20] |
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3.3 Optimal Control Software Version: Theory and User Manual,, the University of Western Australia, (2004). Google Scholar |
[21] |
L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems,, Automatica, 26 (1990), 371.
doi: 10.1016/0005-1098(90)90131-Z. |
[22] |
C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.
doi: 10.3934/jimo.2012.8.591. |
[23] |
C. Jiang, K. L. Teo and G. R. Duan, A suboptimal feedback control for nonlinear time-varying systems with continuous inequality constraints,, Automatica, 48 (2012), 660.
doi: 10.1016/j.automatica.2012.01.019. |
[24] |
C. Jiang, Q. Lin, C. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, Journal of Optimization Theory and Applications, 154 (2012), 30.
doi: 10.1007/s10957-012-0006-9. |
[25] |
C. Y. Kaya and J. M. Martnez, Euler discretization and inexact restoration for optimal control,, Journal of Optimization Theory and Applications, 134 (2007), 191.
doi: 10.1007/s10957-007-9217-x. |
[26] |
C. Y. Kaya and J. L. Noakes, Leapfrog for Optimal Control,, SIAM Journal on Numerical Analysis, (2008).
doi: 10.1137/060675034. |
[27] |
M. I. Kamien and N. L. Schwartz, Dynamic Optimization - The Calculus of Variations and Optimal Control in Economics and Management,, North Holland, (1991).
|
[28] |
T. T. Lam and Y. Bayazitoglu, Application of the sequential gradient restoration algorithm to terminal convective instability problems,, Journal of Optimization Theory and Applications, 49 (1986), 47.
doi: 10.1007/BF00939247. |
[29] |
B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles,, Applied Mathematics and Computation, 224 (2013), 866.
doi: 10.1016/j.amc.2013.08.092. |
[30] |
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260.
doi: 10.1007/s10957-011-9904-5. |
[31] |
B. Li, K. L. Teo, C. C. Lim and G. R. Duan, An optimal PID controller design for nonlinear constrained optimal control problems,, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 1101.
doi: 10.3934/dcdsb.2011.16.1101. |
[32] |
B. Li, K. L. Teo and G. R. Duan, Optimal control computation for discrete time time-delayed optimal control problem with all-time-step inequality constraints,, International Journal of Innovative Computing, 6 (2010), 521. Google Scholar |
[33] |
B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minimax optimal control problems with applications,, Australian and New Zealand Industrial and Applied Mathematics Journal, 51 (2009), 162.
doi: 10.1017/S1446181110000040. |
[34] |
C. J. Li, K. L Teo, B. Li and G. F. Ma, A constrained optimal pid-like controller design for spacecraft attitude stabilization,, Acta Astronautica, 74 (2011), 131.
doi: 10.1016/j.actaastro.2011.12.021. |
[35] |
C. C. Lim and K. L. Teo, Optimal insulin infusion control to a mathematical blood glucoregulatory model with fuzzy parameters,, Cybernetics and Systems, 22 (1991), 1.
doi: 10.1080/01969729108902267. |
[36] |
Q. Lin, R. Loxton and K. L. Teo, The control parameterization for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275.
doi: 10.3934/jimo.2014.10.275. |
[37] |
R. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter,, Automatica, 45 (2009), 973.
doi: 10.1016/j.automatica.2008.10.031. |
[38] |
R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250.
doi: 10.1016/j.automatica.2009.05.029. |
[39] |
R. Loxton, K. L. Teo, and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.
doi: 10.1109/TAC.2009.2029310. |
[40] |
R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2 (2012), 571.
doi: 10.3934/naco.2012.2.571. |
[41] |
R. Loxton, Q. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control,, Automatica, 49 (2013), 2652.
doi: 10.1016/j.automatica.2013.05.027. |
[42] |
R. Loxton, Q. Lin and K. L. Teo, Switching time optimization for nonlinear switched systems: Direct optimization and the time scaling transformation,, Pacific Journal of Optimization, 10 (2014), 537.
|
[43] |
R. Luus, Iterative Dynamic Programming,, Chapman & Hall/CRC, (2000).
doi: 10.1201/9781420036022. |
[44] |
R. Luus and O. N. Okongwu, Towards practical optimal contorl of batch reactors,, Chemical Engineering Journal, 75 (1999), 1. Google Scholar |
[45] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1994). Google Scholar |
[46] |
MATLAB - The Language of Technical Computing, http://mathworks.com/products/matlab/,, 2008., (). Google Scholar |
[47] |
H. Maurer, C. Buskens and G. Feichtinger, Solution techniques for periodic control problems: a case study in production planning,, Optimal Control Applications and Methods, 19 (1998), 185.
doi: 10.1002/(SICI)1099-1514(199805/06)19:3<185::AID-OCA627>3.0.CO;2-E. |
[48] |
H. H. Mehne and A. H. Borzabadi, A numerical method for solving optimal control problems using state parametrization,, Numerical Algorithms, 42 (2006), 165.
doi: 10.1007/s11075-006-9035-5. |
[49] |
A. Miele and T. Wang, Primal-dual properties of sequential gradient-restoration algorithms for optimal control problems, Part 2, General problem,, Journal of Mathematical Analysis and Applications, 119 (1986), 21.
doi: 10.1016/0022-247X(86)90142-3. |
[50] |
H. J. Oberle and B. Sothmann, Numerical computation of optimal feed rates for a fed-batch fermentation model,, Journal of Optimization Theory and Applications, 100 (1999), 1. Google Scholar |
[51] |
R. Petzold and A. C. Hindmarsh, LSODA, Ordinary Differential Equation Solver for Stiff or Non-Stiff System,, 2005., (). Google Scholar |
[52] |
L. S. Pontryagin, V. G. Boltayanskii, R. V. Gamkrelidze and E. F. Mischenko, Mathematical Theory of Optimal Processes,, CRC Press, (1987). Google Scholar |
[53] |
V. Rehbock and I. Livk, Optimal control of a batch crystallization process,, Journal of Industrial and Management Optimization, 3 (2007), 331.
doi: 10.3934/jimo.2007.3.585. |
[54] |
Y. Sakawa and Y. Shindo, Optimal control of container cranes,, Automatica, 18 (1982), 257.
doi: 10.1016/0005-1098(82)90086-3. |
[55] |
K. Schittkowski, NLPQLP: A new fortran implementation of a sequential quadratic programming algorithm for parallel computing,, 2010., (). Google Scholar |
[56] |
A. L. Schwartz, RIOTS-A Matlab toolbox for solving general optimal control problems,, 2008. , (). Google Scholar |
[57] |
Y. Shindo and Y. Sakawa, Local convergence of an algorithm for solving optimal control problems,, Journal of Optimization Theory and Applications, 46 (1985), 265.
doi: 10.1007/BF00939285. |
[58] |
W. Sun and Y. X. Yuan, Optimization Theory and Methods,, Springer, (2006).
|
[59] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Longman Scientific and Technical, (1991).
|
[60] |
K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, Journal of Australian Mathematical Society, 40 (1999), 314.
doi: 10.1017/S0334270000010936. |
[61] |
K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems,, Automatica, 29 (1993), 789.
doi: 10.1016/0005-1098(93)90076-6. |
[62] |
K. L. Teo, and K. H. Wong, Nonlinearly constrained optimal control problems,, Journal of Australian Mathematical Society, 33 (1992), 517.
doi: 10.1017/S0334270000007207. |
[63] |
K. L. Teo, C. J. Goh and C. C. Lim, A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free,, IMA - Journal of Mathematical Control and Information, 6 (1989), 81.
doi: 10.1093/imamci/6.1.81. |
[64] |
K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering,, Journal of Optimization Theory and Applications, 56 (1988), 145.
doi: 10.1007/BF00938530. |
[65] |
N. S. Trahair and J. R. Booker, Optimum elastic columns,, International Journal of Mechanical Sciences, 12 (1970), 973.
doi: 10.1016/0020-7403(70)90037-8. |
[66] |
O. von Stryk, Optimization of dynamic systems in industrial applications,, in Proc. 2nd European Congress on Intelligent Techniques and Soft Computing (EUFIT) (H.J. Zimmermann ed.), (1994), 347. Google Scholar |
[67] |
C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.
doi: 10.3934/jimo.2006.2.435. |
[68] |
J. L. Zhou and A. Tits, User's guide for FFSQP version 3.7: A Fortran code for solving optimization programs, possibly minimax,with general inequality constraints and linear equality constraints, generating feasible iterates, (1997),, Institute for Systems Research, (2074), 92. Google Scholar |
[1] |
Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249 |
[2] |
Grégory Faye, Pascal Chossat. A spatialized model of visual texture perception using the structure tensor formalism. Networks & Heterogeneous Media, 2013, 8 (1) : 211-260. doi: 10.3934/nhm.2013.8.211 |
[3] |
Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078 |
[6] |
Mikko Orispää, Markku Lehtinen. Fortran linear inverse problem solver. Inverse Problems & Imaging, 2010, 4 (3) : 485-503. doi: 10.3934/ipi.2010.4.485 |
[7] |
Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations & Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019 |
[8] |
Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135 |
[9] |
Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578 |
[10] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
[11] |
Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435 |
[12] |
Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275 |
[13] |
Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021 |
[14] |
Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625 |
[15] |
Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136 |
[16] |
Jorge San Martín, Takéo Takahashi, Marius Tucsnak. An optimal control approach to ciliary locomotion. Mathematical Control & Related Fields, 2016, 6 (2) : 293-334. doi: 10.3934/mcrf.2016005 |
[17] |
C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435 |
[18] |
Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455 |
[19] |
Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030 |
[20] |
Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]