• Previous Article
    Auction games for coordination of large-scale elastic loads in deregulated electricity markets
  • JIMO Home
  • This Issue
  • Next Article
    An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs
July  2016, 12(3): 819-831. doi: 10.3934/jimo.2016.12.819

Variable fractional delay filter design with discrete coefficients

1. 

Dept. of Mathematics and Statistics, Curtin University of Technology, Perth, Australia, Australia

Received  May 2014 Revised  June 2014 Published  September 2015

This paper investigates the optimal design of variable fractional delay (VFD) filter with discrete coefficients as a means of achieving low complexity and efficient hardware implementation. The filter coefficients are expressed as the sum of signed power-of-two (SPT) terms with a restriction on the total number of power-of-two terms. An optimization problem with least squares criterion is formulated as a mixed-integer programming problem. An optimal scaling factor quantization scheme is applied to the problem resulting in an optimal scaling factor quantized solution. This solution is then improved further by applying a discrete filled function, that has been extended for a mixed integer optimization problem. To apply the discrete filled function method, it requires multiple calculations of the objective function around the neighborhood of a searched point. Thus, an updating scheme is developed to efficiently calculate the objective function in a neighborhood of a point. Design examples demonstrate the effectiveness of the proposed optimization approach.
Citation: Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819
References:
[1]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints,, IEEE Trans. Circuits Systems II, 54 (2007), 24.   Google Scholar

[2]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints,, IEEE Trans. Circuits Systems II, 55 (2008), 442.   Google Scholar

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Systems I, 54 (2007), 1348.  doi: 10.1109/TCSI.2007.897775.  Google Scholar

[4]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients,, IEEE Signal Processing Letters, 22 (2015), 1643.  doi: 10.1109/LSP.2015.2420652.  Google Scholar

[5]

H. H. Dam, Design of variable fractional delay filter with fractional delay constraints,, IEEE Signal Processing Letters, 21 (2014), 1361.  doi: 10.1109/LSP.2014.2336662.  Google Scholar

[6]

H. H. Dam and K. L. Teo, Allpass VFD filter design,, IEEE Trans. Signal Processing, 58 (2010), 4432.  doi: 10.1109/TSP.2010.2048316.  Google Scholar

[7]

H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients,, International Journal of Innovative Computing, 9 (2013), 2995.   Google Scholar

[8]

T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766.  doi: 10.1109/TCSI.2011.2180431.  Google Scholar

[9]

T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters,, Signal Processing, 93 (2013), 923.  doi: 10.1016/j.sigpro.2012.11.004.  Google Scholar

[10]

T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398.  doi: 10.1109/TCSI.2011.2123510.  Google Scholar

[11]

C. W. Farrow, A continuously variable digital delay element,, in Proc. IEEE Int. Symp. Circuits Syst., (1988), 2641.  doi: 10.1109/ISCAS.1988.15483.  Google Scholar

[12]

Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship,, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220.   Google Scholar

[13]

D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients,, IEEE Trans. Signal Processing, 50 (2002), 1935.   Google Scholar

[14]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, in IEEE Trans. Circuits Systems, 37 (1990), 1480.  doi: 10.1109/31.101268.  Google Scholar

[15]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Mathematical Problems in Engineering, 2011 (2011), 1.  doi: 10.1155/2011/402437.  Google Scholar

[16]

C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure,, IEEE Signal Processing Letters, 10 (2003), 189.  doi: 10.1109/LSP.2003.813681.  Google Scholar

show all references

References:
[1]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints,, IEEE Trans. Circuits Systems II, 54 (2007), 24.   Google Scholar

[2]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints,, IEEE Trans. Circuits Systems II, 55 (2008), 442.   Google Scholar

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Systems I, 54 (2007), 1348.  doi: 10.1109/TCSI.2007.897775.  Google Scholar

[4]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients,, IEEE Signal Processing Letters, 22 (2015), 1643.  doi: 10.1109/LSP.2015.2420652.  Google Scholar

[5]

H. H. Dam, Design of variable fractional delay filter with fractional delay constraints,, IEEE Signal Processing Letters, 21 (2014), 1361.  doi: 10.1109/LSP.2014.2336662.  Google Scholar

[6]

H. H. Dam and K. L. Teo, Allpass VFD filter design,, IEEE Trans. Signal Processing, 58 (2010), 4432.  doi: 10.1109/TSP.2010.2048316.  Google Scholar

[7]

H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients,, International Journal of Innovative Computing, 9 (2013), 2995.   Google Scholar

[8]

T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766.  doi: 10.1109/TCSI.2011.2180431.  Google Scholar

[9]

T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters,, Signal Processing, 93 (2013), 923.  doi: 10.1016/j.sigpro.2012.11.004.  Google Scholar

[10]

T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398.  doi: 10.1109/TCSI.2011.2123510.  Google Scholar

[11]

C. W. Farrow, A continuously variable digital delay element,, in Proc. IEEE Int. Symp. Circuits Syst., (1988), 2641.  doi: 10.1109/ISCAS.1988.15483.  Google Scholar

[12]

Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship,, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220.   Google Scholar

[13]

D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients,, IEEE Trans. Signal Processing, 50 (2002), 1935.   Google Scholar

[14]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, in IEEE Trans. Circuits Systems, 37 (1990), 1480.  doi: 10.1109/31.101268.  Google Scholar

[15]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Mathematical Problems in Engineering, 2011 (2011), 1.  doi: 10.1155/2011/402437.  Google Scholar

[16]

C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure,, IEEE Signal Processing Letters, 10 (2003), 189.  doi: 10.1109/LSP.2003.813681.  Google Scholar

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[4]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[7]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[8]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[11]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[16]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[17]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[18]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[19]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[20]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]