-
Previous Article
Auction games for coordination of large-scale elastic loads in deregulated electricity markets
- JIMO Home
- This Issue
-
Next Article
An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs
Variable fractional delay filter design with discrete coefficients
1. | Dept. of Mathematics and Statistics, Curtin University of Technology, Perth, Australia, Australia |
References:
[1] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints, IEEE Trans. Circuits Systems II, 54 (2007), 24-28. |
[2] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints, IEEE Trans. Circuits Systems II, 55 (2008), 442-446. |
[3] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients, IEEE Trans. Circuits Systems I, 54 (2007), 1348-1357.
doi: 10.1109/TCSI.2007.897775. |
[4] |
H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Signal Processing Letters, 22 (2015), 1643-1646.
doi: 10.1109/LSP.2015.2420652. |
[5] |
H. H. Dam, Design of variable fractional delay filter with fractional delay constraints, IEEE Signal Processing Letters, 21 (2014), 1361-1364.
doi: 10.1109/LSP.2014.2336662. |
[6] |
H. H. Dam and K. L. Teo, Allpass VFD filter design, IEEE Trans. Signal Processing, 58 (2010), 4432-4436.
doi: 10.1109/TSP.2010.2048316. |
[7] |
H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients, International Journal of Innovative Computing, Information and Control, 9 (2013), 2995-3003. |
[8] |
T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766-1774.
doi: 10.1109/TCSI.2011.2180431. |
[9] |
T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters, Signal Processing, 93 (2013), 923-932.
doi: 10.1016/j.sigpro.2012.11.004. |
[10] |
T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398-2408.
doi: 10.1109/TCSI.2011.2123510. |
[11] |
C. W. Farrow, A continuously variable digital delay element, in Proc. IEEE Int. Symp. Circuits Syst., Vol. 3, IEEE, 1988, 2641-2645.
doi: 10.1109/ISCAS.1988.15483. |
[12] |
Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220-224. |
[13] |
D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Processing, 50 (2002), 1935-1941. |
[14] |
Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude, in IEEE Trans. Circuits Systems, 37 (1990), 1480-1486.
doi: 10.1109/31.101268. |
[15] |
H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming, Mathematical Problems in Engineering, 2011 (2011), 1-13.
doi: 10.1155/2011/402437. |
[16] |
C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure, IEEE Signal Processing Letters, 10 (2003), 189-192.
doi: 10.1109/LSP.2003.813681. |
show all references
References:
[1] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints, IEEE Trans. Circuits Systems II, 54 (2007), 24-28. |
[2] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints, IEEE Trans. Circuits Systems II, 55 (2008), 442-446. |
[3] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients, IEEE Trans. Circuits Systems I, 54 (2007), 1348-1357.
doi: 10.1109/TCSI.2007.897775. |
[4] |
H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Signal Processing Letters, 22 (2015), 1643-1646.
doi: 10.1109/LSP.2015.2420652. |
[5] |
H. H. Dam, Design of variable fractional delay filter with fractional delay constraints, IEEE Signal Processing Letters, 21 (2014), 1361-1364.
doi: 10.1109/LSP.2014.2336662. |
[6] |
H. H. Dam and K. L. Teo, Allpass VFD filter design, IEEE Trans. Signal Processing, 58 (2010), 4432-4436.
doi: 10.1109/TSP.2010.2048316. |
[7] |
H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients, International Journal of Innovative Computing, Information and Control, 9 (2013), 2995-3003. |
[8] |
T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766-1774.
doi: 10.1109/TCSI.2011.2180431. |
[9] |
T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters, Signal Processing, 93 (2013), 923-932.
doi: 10.1016/j.sigpro.2012.11.004. |
[10] |
T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398-2408.
doi: 10.1109/TCSI.2011.2123510. |
[11] |
C. W. Farrow, A continuously variable digital delay element, in Proc. IEEE Int. Symp. Circuits Syst., Vol. 3, IEEE, 1988, 2641-2645.
doi: 10.1109/ISCAS.1988.15483. |
[12] |
Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220-224. |
[13] |
D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Processing, 50 (2002), 1935-1941. |
[14] |
Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude, in IEEE Trans. Circuits Systems, 37 (1990), 1480-1486.
doi: 10.1109/31.101268. |
[15] |
H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming, Mathematical Problems in Engineering, 2011 (2011), 1-13.
doi: 10.1155/2011/402437. |
[16] |
C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure, IEEE Signal Processing Letters, 10 (2003), 189-192.
doi: 10.1109/LSP.2003.813681. |
[1] |
Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial and Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595 |
[2] |
Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations and Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032 |
[3] |
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 |
[4] |
Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911 |
[5] |
Deqiang Qu, Youlin Shang, Dan Wu, Guanglei Sun. Filled function method to optimize supply chain transportation costs. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021115 |
[6] |
Mahmoud Abouagwa, Ji Li. G-neutral stochastic differential equations with variable delay and non-Lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1583-1606. doi: 10.3934/dcdsb.2019241 |
[7] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[8] |
Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 |
[9] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[10] |
Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031 |
[11] |
Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020 |
[12] |
Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316 |
[13] |
Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 |
[14] |
Nguyen Huy Tuan, Tran Ngoc Thach, Yong Zhou. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evolution Equations and Control Theory, 2020, 9 (2) : 561-579. doi: 10.3934/eect.2020024 |
[15] |
Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems and Imaging, 2022, 16 (3) : 613-624. doi: 10.3934/ipi.2021064 |
[16] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032 |
[17] |
Stephanie Flores, Elijah Hight, Everardo Olivares-Vargas, Tamer Oraby, Jose Palacio, Erwin Suazo, Jasang Yoon. Exact and numerical solution of stochastic Burgers equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2735-2750. doi: 10.3934/dcdss.2020224 |
[18] |
Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349 |
[19] |
Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic and Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031 |
[20] |
M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]