January  2016, 12(1): 83-102. doi: 10.3934/jimo.2016.12.83

The optimal portfolios based on a modified safety-first rule with risk-free saving

1. 

College of Science & Technology, and Faculty of Business, Ningbo University, Ningbo 315211, China

2. 

Southampton Statistical Sciences Research Institute, and School of Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom

Received  July 2013 Revised  November 2014 Published  April 2015

How to manage the social security trust funds is a topic of wide interests both academically and professionally. In the setting of portfolio selection with social security funds investment, we propose a modified safety-first (MSF) rule with portfolio selection including risk-free saving. We first demonstrate under some mild assumptions that the solution to the MSF model for an individual investor can be expressed by explicitly analytical formula and the necessary and sufficient conditions for their existence are obtained. We then derive the safety-first efficient frontiers in both the space of expected return and insured return level and the space of standard deviation and expected return, with numerical examples illustrated. By comparing the results of the MSF model with those of the mean-variance (M-V) model, some novel insights into the differences between them are further gained.
Citation: Yuanyao Ding, Zudi Lu. The optimal portfolios based on a modified safety-first rule with risk-free saving. Journal of Industrial & Management Optimization, 2016, 12 (1) : 83-102. doi: 10.3934/jimo.2016.12.83
References:
[1]

F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.  doi: 10.1016/0304-405X(77)90003-4.  Google Scholar

[2]

V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.  doi: 10.1016/0304-405X(75)90025-2.  Google Scholar

[3]

M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.  doi: 10.1007/s10957-009-9576-6.  Google Scholar

[4]

S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.  doi: 10.1017/S0022109010000141.  Google Scholar

[5]

Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.  doi: 10.1080/14697680802392488.  Google Scholar

[6]

Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.  doi: 10.1016/j.jspi.2009.01.018.  Google Scholar

[7]

M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004).   Google Scholar

[8]

P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116.   Google Scholar

[9]

S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.  doi: 10.2307/1910956.  Google Scholar

[10]

K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.  doi: 10.1109/TAC.2004.824469.  Google Scholar

[11]

K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.  doi: 10.1007/s00186-005-0045-1.  Google Scholar

[12]

H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.  doi: 10.1016/j.jbankfin.2009.02.014.  Google Scholar

[13]

D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.   Google Scholar

[14]

Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.  doi: 10.1016/j.qref.2009.11.004.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79.   Google Scholar

[16]

R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.  doi: 10.2307/2329621.  Google Scholar

[17]

V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.  doi: 10.1007/s10559-012-9396-9.  Google Scholar

[18]

L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.  doi: 10.1016/S0895-7177(01)00116-9.  Google Scholar

[19]

L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.   Google Scholar

[20]

A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.  doi: 10.2307/1907413.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.  doi: 10.2307/2676187.  Google Scholar

[22]

N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010).   Google Scholar

[23]

L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.  doi: 10.2307/2296146.  Google Scholar

[24]

S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.  doi: 10.1023/B:JOGO.0000006719.64826.55.  Google Scholar

show all references

References:
[1]

F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.  doi: 10.1016/0304-405X(77)90003-4.  Google Scholar

[2]

V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.  doi: 10.1016/0304-405X(75)90025-2.  Google Scholar

[3]

M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.  doi: 10.1007/s10957-009-9576-6.  Google Scholar

[4]

S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.  doi: 10.1017/S0022109010000141.  Google Scholar

[5]

Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.  doi: 10.1080/14697680802392488.  Google Scholar

[6]

Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.  doi: 10.1016/j.jspi.2009.01.018.  Google Scholar

[7]

M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004).   Google Scholar

[8]

P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116.   Google Scholar

[9]

S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.  doi: 10.2307/1910956.  Google Scholar

[10]

K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.  doi: 10.1109/TAC.2004.824469.  Google Scholar

[11]

K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.  doi: 10.1007/s00186-005-0045-1.  Google Scholar

[12]

H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.  doi: 10.1016/j.jbankfin.2009.02.014.  Google Scholar

[13]

D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.   Google Scholar

[14]

Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.  doi: 10.1016/j.qref.2009.11.004.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79.   Google Scholar

[16]

R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.  doi: 10.2307/2329621.  Google Scholar

[17]

V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.  doi: 10.1007/s10559-012-9396-9.  Google Scholar

[18]

L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.  doi: 10.1016/S0895-7177(01)00116-9.  Google Scholar

[19]

L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.   Google Scholar

[20]

A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.  doi: 10.2307/1907413.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.  doi: 10.2307/2676187.  Google Scholar

[22]

N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010).   Google Scholar

[23]

L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.  doi: 10.2307/2296146.  Google Scholar

[24]

S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.  doi: 10.1023/B:JOGO.0000006719.64826.55.  Google Scholar

[1]

Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1273-1290. doi: 10.3934/jimo.2016072

[2]

Yuanyao Ding, Zudi Lu. How's the performance of the optimized portfolios by safety-first rules: Theory with empirical comparisons. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019076

[3]

Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1

[4]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[5]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[6]

Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007

[7]

Philip Lafrance, Alfred Menezes. On the security of the WOTS-PRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185-193. doi: 10.3934/amc.2019012

[8]

Riccardo Aragona, Alessio Meneghetti. Type-preserving matrices and security of block ciphers. Advances in Mathematics of Communications, 2019, 13 (2) : 235-251. doi: 10.3934/amc.2019016

[9]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control & Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[10]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019133

[11]

Jian Mao, Qixiao Lin, Jingdong Bian. Application of learning algorithms in smart home IoT system security. Mathematical Foundations of Computing, 2018, 1 (1) : 63-76. doi: 10.3934/mfc.2018004

[12]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[13]

Neal Koblitz, Alfred Menezes. Critical perspectives on provable security: Fifteen years of "another look" papers. Advances in Mathematics of Communications, 2019, 13 (4) : 517-558. doi: 10.3934/amc.2019034

[14]

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay. Group signature from lattices preserving forward security in dynamic setting. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020027

[15]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[16]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[17]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[18]

Yanqin Bai, Yudan Wei, Qian Li. An optimal trade-off model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947-965. doi: 10.3934/jimo.2016055

[19]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[20]

Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial & Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]