January  2016, 12(1): 83-102. doi: 10.3934/jimo.2016.12.83

The optimal portfolios based on a modified safety-first rule with risk-free saving

1. 

College of Science & Technology, and Faculty of Business, Ningbo University, Ningbo 315211, China

2. 

Southampton Statistical Sciences Research Institute, and School of Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom

Received  July 2013 Revised  November 2014 Published  April 2015

How to manage the social security trust funds is a topic of wide interests both academically and professionally. In the setting of portfolio selection with social security funds investment, we propose a modified safety-first (MSF) rule with portfolio selection including risk-free saving. We first demonstrate under some mild assumptions that the solution to the MSF model for an individual investor can be expressed by explicitly analytical formula and the necessary and sufficient conditions for their existence are obtained. We then derive the safety-first efficient frontiers in both the space of expected return and insured return level and the space of standard deviation and expected return, with numerical examples illustrated. By comparing the results of the MSF model with those of the mean-variance (M-V) model, some novel insights into the differences between them are further gained.
Citation: Yuanyao Ding, Zudi Lu. The optimal portfolios based on a modified safety-first rule with risk-free saving. Journal of Industrial & Management Optimization, 2016, 12 (1) : 83-102. doi: 10.3934/jimo.2016.12.83
References:
[1]

F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.  doi: 10.1016/0304-405X(77)90003-4.  Google Scholar

[2]

V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.  doi: 10.1016/0304-405X(75)90025-2.  Google Scholar

[3]

M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.  doi: 10.1007/s10957-009-9576-6.  Google Scholar

[4]

S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.  doi: 10.1017/S0022109010000141.  Google Scholar

[5]

Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.  doi: 10.1080/14697680802392488.  Google Scholar

[6]

Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.  doi: 10.1016/j.jspi.2009.01.018.  Google Scholar

[7]

M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004).   Google Scholar

[8]

P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116.   Google Scholar

[9]

S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.  doi: 10.2307/1910956.  Google Scholar

[10]

K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.  doi: 10.1109/TAC.2004.824469.  Google Scholar

[11]

K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.  doi: 10.1007/s00186-005-0045-1.  Google Scholar

[12]

H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.  doi: 10.1016/j.jbankfin.2009.02.014.  Google Scholar

[13]

D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.   Google Scholar

[14]

Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.  doi: 10.1016/j.qref.2009.11.004.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79.   Google Scholar

[16]

R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.  doi: 10.2307/2329621.  Google Scholar

[17]

V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.  doi: 10.1007/s10559-012-9396-9.  Google Scholar

[18]

L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.  doi: 10.1016/S0895-7177(01)00116-9.  Google Scholar

[19]

L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.   Google Scholar

[20]

A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.  doi: 10.2307/1907413.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.  doi: 10.2307/2676187.  Google Scholar

[22]

N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010).   Google Scholar

[23]

L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.  doi: 10.2307/2296146.  Google Scholar

[24]

S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.  doi: 10.1023/B:JOGO.0000006719.64826.55.  Google Scholar

show all references

References:
[1]

F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.  doi: 10.1016/0304-405X(77)90003-4.  Google Scholar

[2]

V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.  doi: 10.1016/0304-405X(75)90025-2.  Google Scholar

[3]

M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.  doi: 10.1007/s10957-009-9576-6.  Google Scholar

[4]

S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.  doi: 10.1017/S0022109010000141.  Google Scholar

[5]

Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.  doi: 10.1080/14697680802392488.  Google Scholar

[6]

Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.  doi: 10.1016/j.jspi.2009.01.018.  Google Scholar

[7]

M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004).   Google Scholar

[8]

P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116.   Google Scholar

[9]

S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.  doi: 10.2307/1910956.  Google Scholar

[10]

K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.  doi: 10.1109/TAC.2004.824469.  Google Scholar

[11]

K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.  doi: 10.1007/s00186-005-0045-1.  Google Scholar

[12]

H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.  doi: 10.1016/j.jbankfin.2009.02.014.  Google Scholar

[13]

D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.   Google Scholar

[14]

Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.  doi: 10.1016/j.qref.2009.11.004.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79.   Google Scholar

[16]

R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.  doi: 10.2307/2329621.  Google Scholar

[17]

V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.  doi: 10.1007/s10559-012-9396-9.  Google Scholar

[18]

L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.  doi: 10.1016/S0895-7177(01)00116-9.  Google Scholar

[19]

L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.   Google Scholar

[20]

A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.  doi: 10.2307/1907413.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.  doi: 10.2307/2676187.  Google Scholar

[22]

N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010).   Google Scholar

[23]

L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.  doi: 10.2307/2296146.  Google Scholar

[24]

S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.  doi: 10.1023/B:JOGO.0000006719.64826.55.  Google Scholar

[1]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[2]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[7]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[8]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[9]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[10]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[11]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[12]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[17]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[18]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[19]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[20]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]