July  2016, 12(3): 879-890. doi: 10.3934/jimo.2016.12.879

An augmented Lagrangian-based parallel splitting method for a one-leader-two-follower game

1. 

Department of Mathematics, Taiyuan Normal University, Taiyuan 030012, Shanxi Province, China

Received  February 2014 Revised  November 2014 Published  September 2015

In this paper, we exploit a new parallel splitting method for the typical structured variational inequality problems which can be interpreted as a game with a leader and two followers. In the framework of this method, two followers decide their strategies simultaneously based on the instruction of the leader. Then, the leader improves his instruction by revising his own variable value according to the feedback information from the followers. The convergence of the method is established under some suitable conditions. Finally, we apply the proposed method to solve some application problems. Computational studies show that the method is reliable and efficient.
Citation: Xihong Yan. An augmented Lagrangian-based parallel splitting method for a one-leader-two-follower game. Journal of Industrial & Management Optimization, 2016, 12 (3) : 879-890. doi: 10.3934/jimo.2016.12.879
References:
[1]

G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems,, Mathematical Programming, 64 (1994), 81.  doi: 10.1007/BF01582566.  Google Scholar

[2]

J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,, Mathematical Programming, 55 (1992), 293.  doi: 10.1007/BF01581204.  Google Scholar

[3]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems,, Computational Optimization and Applications, 1 (1992), 93.  doi: 10.1007/BF00247655.  Google Scholar

[4]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations,, Computers and Mathematics with Applications, 2 (1976), 17.  doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[5]

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM Studies in Applied Mathematics, (1989).  doi: 10.1137/1.9781611970838.  Google Scholar

[6]

D. Han, H. He, H. Yang and X. Yuan, A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints,, Numerische Mathematik, 127 (2014), 167.  doi: 10.1007/s00211-013-0580-2.  Google Scholar

[7]

B. S. He, Inexact implicit methods for monotone general variational inequalities,, Mathematical Programming, 86 (1999), 199.  doi: 10.1007/s101070050086.  Google Scholar

[8]

B. S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities,, Computational Optimization and Applications, 42 (2009), 195.  doi: 10.1007/s10589-007-9109-x.  Google Scholar

[9]

B. S. He, L. Z. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities,, Mathematical Programming 92 (2002), 92 (2002), 103.  doi: 10.1007/s101070100280.  Google Scholar

[10]

B. S. He, Y. Xu and X. M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities,, Computational Optimization and Applications, 35 (2006), 19.  doi: 10.1007/s10589-006-6442-4.  Google Scholar

[11]

S. Kontogiorgis and R. Meyer, A variable-penalty alternating directions method for convex optimization,, Mathematical Programming, 83 (1998), 29.  doi: 10.1007/BF02680549.  Google Scholar

[12]

A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications,, Kluwer, (1996).  doi: 10.1007/978-1-4615-2301-7.  Google Scholar

[13]

M. Tao and X. Yuan, An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures,, Computational Optimization and Applications, 52 (2012), 439.  doi: 10.1007/s10589-011-9417-z.  Google Scholar

[14]

P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities,, SIAM Journal on Optimization, 7 (1997), 951.  doi: 10.1137/S1052623495279797.  Google Scholar

[15]

K. Wang, L. Xu and D. Han, A new parallel splitting descent method for structured variational inequalities,, Journal of Industrial and Management Optimization, 10 (2014), 461.  doi: 10.3934/jimo.2014.10.461.  Google Scholar

show all references

References:
[1]

G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems,, Mathematical Programming, 64 (1994), 81.  doi: 10.1007/BF01582566.  Google Scholar

[2]

J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,, Mathematical Programming, 55 (1992), 293.  doi: 10.1007/BF01581204.  Google Scholar

[3]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems,, Computational Optimization and Applications, 1 (1992), 93.  doi: 10.1007/BF00247655.  Google Scholar

[4]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations,, Computers and Mathematics with Applications, 2 (1976), 17.  doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[5]

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM Studies in Applied Mathematics, (1989).  doi: 10.1137/1.9781611970838.  Google Scholar

[6]

D. Han, H. He, H. Yang and X. Yuan, A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints,, Numerische Mathematik, 127 (2014), 167.  doi: 10.1007/s00211-013-0580-2.  Google Scholar

[7]

B. S. He, Inexact implicit methods for monotone general variational inequalities,, Mathematical Programming, 86 (1999), 199.  doi: 10.1007/s101070050086.  Google Scholar

[8]

B. S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities,, Computational Optimization and Applications, 42 (2009), 195.  doi: 10.1007/s10589-007-9109-x.  Google Scholar

[9]

B. S. He, L. Z. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities,, Mathematical Programming 92 (2002), 92 (2002), 103.  doi: 10.1007/s101070100280.  Google Scholar

[10]

B. S. He, Y. Xu and X. M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities,, Computational Optimization and Applications, 35 (2006), 19.  doi: 10.1007/s10589-006-6442-4.  Google Scholar

[11]

S. Kontogiorgis and R. Meyer, A variable-penalty alternating directions method for convex optimization,, Mathematical Programming, 83 (1998), 29.  doi: 10.1007/BF02680549.  Google Scholar

[12]

A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications,, Kluwer, (1996).  doi: 10.1007/978-1-4615-2301-7.  Google Scholar

[13]

M. Tao and X. Yuan, An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures,, Computational Optimization and Applications, 52 (2012), 439.  doi: 10.1007/s10589-011-9417-z.  Google Scholar

[14]

P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities,, SIAM Journal on Optimization, 7 (1997), 951.  doi: 10.1137/S1052623495279797.  Google Scholar

[15]

K. Wang, L. Xu and D. Han, A new parallel splitting descent method for structured variational inequalities,, Journal of Industrial and Management Optimization, 10 (2014), 461.  doi: 10.3934/jimo.2014.10.461.  Google Scholar

[1]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[2]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. Aims: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[13]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[18]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]