July  2016, 12(3): 907-930. doi: 10.3934/jimo.2016.12.907

Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management

1. 

Department of Industrial Engineering & Management Systems , Amirkabir University of Technology, 424 Hafez Ave., P.O. Box 15875-4413, Tehran, Iran, Iran

Received  January 2015 Revised  April 2015 Published  September 2015

This paper presents a new mathematical model for integrating the virtual dynamic cellular manufacturing system into supply chain management with an extensive coverage of important manufacturing features. The considered model regards multi-plants and facility locations, multi-market allocation, multi-period planning horizons with demand and part-mix variation, machine and labor time-capacity, labor assignment, training and purchasing or selling of new machines for an increased level of plant capacity. The main constraints are market demand satisfaction in each period, machine and labor availability, production volume for each plant and the amounts allocated to each market. To validate and verify the proposed model is explained in terms of an industrial case from a typical equipment manufacturer. Some of the hard constraints of the proposed model are relaxed in order to obtain a lower bound on the objective function value. In fact, the number of machines and workers allocated to each cell are restricted to yield feasible solutions and tight upper bounds on the objective values for medium size instances in a shorter time. The relaxed model yields tight lower bounds for medium instances in a reasonable computational time. Furthermore, a Benders decomposition is developed for solving the upper bounding model.
Citation: Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial & Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907
References:
[1]

A. Aalaei and H. Davoudpour, Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system,, AIP Conf. Proc., 1499 (2012), 239. doi: 10.1063/1.4768994.

[2]

A. Aalaei and H. Davoudpour, Revised multi-choice goal programming for incorporated dynamic virtual cellular manufacturing into supply chain management: A case study,, Engineering Applications of Artificial Intelligence, (2015). doi: 10.1016/j.engappai.2015.04.005.

[3]

S. Ahkioon, A. A. Bulgak T. Bektas, Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration,, European Journal of Operational Research, 192 (2009), 414. doi: 10.1016/j.ejor.2007.09.023.

[4]

J. Balakrishnan and C. H. Cheng, Dynamic cellular manufacturing under multi-period planning horizons,, Journal of Manufacturing Technology Management, 16 (2005), 516.

[5]

J. F. Benders, Partitioning procedures for solving mixed-variables programming problems,, Numerische Mathematik, 4 (1962), 238. doi: 10.1007/BF01386316.

[6]

H. M. Bidhandi, R. M. Yusuff, M. M. H. M. Ahmad and M. R. A. Bakar, Development of a new approach for deterministic supply chain network design,, European Journal of Operational Research, 198 (2009), 121.

[7]

O. Çakιr, Benders decomposition applied to multi-commodity, multi-mode distribution planning,, Expert Systems with Applications, 36 (2009), 8212.

[8]

J. Chen and S. S. Heragu, Stepwise decomposition approaches for large scale cell formation problems,, European Journal of Operational Research, 113 (1999), 64. doi: 10.1016/S0377-2217(97)00419-0.

[9]

A. J. Conejo, E. Castillo, R. Minguez and R. Garcia-Bertrand, Decomposition Techniques in Mathematical Programming,, Engineering and Science Applications, (2006).

[10]

F. Defersha and M. Chen, A comprehensive mathematical model for the design of cellular manufacturing systems,, International Journal of Production Economics, 103 (2006), 767. doi: 10.1016/j.ijpe.2005.10.008.

[11]

K. Dogan and M. Goetschalckx, A primal decomposition method for the integrated design of multi-period production-distribution systems,, IIE Transactions, 31 (1999), 1027. doi: 10.1080/07408179908969904.

[12]

S. S. Heragu, Group technology and cellular manufacturing,, IEEE Transactions of Systems, 24 (1994), 203. doi: 10.1109/21.281420.

[13]

S. S. Heragu and J. Chen, Optimal solution of cellular manufacturing system design: Benders' decomposition approach,, European Journal of Operational Research, 107 (1998), 175. doi: 10.1016/S0377-2217(97)00256-7.

[14]

S. E. Kesen, M. D. Toksari, Z. Güngr and E. Güner, Analyzing the behaviors of virtual cells (VCs) and traditional manufacturing systems: Ant colony optimization (ACO)-based metamodels,, Computers and Operations Research, 36 (2009), 2275. doi: 10.1016/j.cor.2008.09.002.

[15]

H. Li and K. Womer, Optimizing the supply chain configuration for make-to-order manufacturing,, European Journal of Operational Research, 221 (2012), 118. doi: 10.1016/j.ejor.2012.03.025.

[16]

I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment,, Computers and Mathematics with Applications, 60 (2010), 1014. doi: 10.1016/j.camwa.2010.03.044.

[17]

I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems,, International Journal of Production Research, 49 (2011), 6517. doi: 10.1080/00207543.2010.524902.

[18]

I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system,, Journal of Manufacturing Systems, 31 (2012), 214. doi: 10.1016/j.jmsy.2011.07.007.

[19]

S. M. Mansouri, S. M. Moattar Husseini and S. T. Newman, A review of the modern approaches to multi-criteria cell design,, International Journal of Production Research, 38 (2000), 1201. doi: 10.1080/002075400189095.

[20]

M. T. Melo, S. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management, A review,, European Journal of Operational Research, 196 (2009), 401. doi: 10.1016/j.ejor.2008.05.007.

[21]

G. Nomden, J. Slomp and N. C. Suresh, Virtual manufacturing cells: A taxonomy of past research and identification of future research issues,, International Journal of Flexible Manufacturing Systems, 17 (2005), 71. doi: 10.1007/s10696-006-8122-1.

[22]

H. Osman and K. Demirli, A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection,, International Journal of Production Economics, 124 (2010), 97. doi: 10.1016/j.ijpe.2009.10.012.

[23]

P. P. Rao and R. P. Mohanty, Impact of cellular manufacturing on supply chain management: Exploration of interrelationships between design issues,, International Journal of Manufacturing Technology and Management, 5 (2003), 507. doi: 10.1504/IJMTM.2003.003706.

[24]

M. Rheault, J. Drolet and G. Abdulnour, Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment,, Computers & Industrial Engineering, 29 (1995), 221. doi: 10.1016/0360-8352(95)00075-C.

[25]

L. K. Saxena and P. K. Jain, An integrated model of dynamic cellular manufacturing and supply chain system design,, International Journal of Advance Manufacturing Technology, 62 (2012), 385. doi: 10.1007/s00170-011-3806-4.

[26]

J. Schaller, Incorporating cellular manufacturing into supply chain design,, International Journal of Production Research, 46 (2008), 4925. doi: 10.1080/00207540701348761.

[27]

D. Simchi-Levi, P. Kaminsky and R. Shankar, Designing and Managing the Supply Chain: Concepts,, Strategies and Case Studies, (2007).

[28]

J. Slomp, B. V. Chowdary and N. C. Suresh, Design of virtual manufacturing cells: A mathematical programming approach,, Robotics and Computer Integrated Manufacturing, 21 (2005), 273. doi: 10.1016/j.rcim.2004.11.001.

[29]

S. Talluri and R. C. Baker, A multi-phase mathematical programming approach for effective supply chain design,, European Journal of Operational Research, 141 (2002), 544. doi: 10.1016/S0377-2217(01)00277-6.

[30]

H. Uster and H. Agrahari, A Benders decomposition approach for a distribution network design problem with consolidation and capacity considerations,, Operational Research Letters, 39 (2011), 138. doi: 10.1016/j.orl.2011.02.003.

[31]

U. Wemmerlov and N. L. Hyer, Cellular manufacturing in the U. S. industry: A survey of users,, International Journal of Production Research, 27 (1989), 1511. doi: 10.1080/00207548908942637.

show all references

References:
[1]

A. Aalaei and H. Davoudpour, Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system,, AIP Conf. Proc., 1499 (2012), 239. doi: 10.1063/1.4768994.

[2]

A. Aalaei and H. Davoudpour, Revised multi-choice goal programming for incorporated dynamic virtual cellular manufacturing into supply chain management: A case study,, Engineering Applications of Artificial Intelligence, (2015). doi: 10.1016/j.engappai.2015.04.005.

[3]

S. Ahkioon, A. A. Bulgak T. Bektas, Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration,, European Journal of Operational Research, 192 (2009), 414. doi: 10.1016/j.ejor.2007.09.023.

[4]

J. Balakrishnan and C. H. Cheng, Dynamic cellular manufacturing under multi-period planning horizons,, Journal of Manufacturing Technology Management, 16 (2005), 516.

[5]

J. F. Benders, Partitioning procedures for solving mixed-variables programming problems,, Numerische Mathematik, 4 (1962), 238. doi: 10.1007/BF01386316.

[6]

H. M. Bidhandi, R. M. Yusuff, M. M. H. M. Ahmad and M. R. A. Bakar, Development of a new approach for deterministic supply chain network design,, European Journal of Operational Research, 198 (2009), 121.

[7]

O. Çakιr, Benders decomposition applied to multi-commodity, multi-mode distribution planning,, Expert Systems with Applications, 36 (2009), 8212.

[8]

J. Chen and S. S. Heragu, Stepwise decomposition approaches for large scale cell formation problems,, European Journal of Operational Research, 113 (1999), 64. doi: 10.1016/S0377-2217(97)00419-0.

[9]

A. J. Conejo, E. Castillo, R. Minguez and R. Garcia-Bertrand, Decomposition Techniques in Mathematical Programming,, Engineering and Science Applications, (2006).

[10]

F. Defersha and M. Chen, A comprehensive mathematical model for the design of cellular manufacturing systems,, International Journal of Production Economics, 103 (2006), 767. doi: 10.1016/j.ijpe.2005.10.008.

[11]

K. Dogan and M. Goetschalckx, A primal decomposition method for the integrated design of multi-period production-distribution systems,, IIE Transactions, 31 (1999), 1027. doi: 10.1080/07408179908969904.

[12]

S. S. Heragu, Group technology and cellular manufacturing,, IEEE Transactions of Systems, 24 (1994), 203. doi: 10.1109/21.281420.

[13]

S. S. Heragu and J. Chen, Optimal solution of cellular manufacturing system design: Benders' decomposition approach,, European Journal of Operational Research, 107 (1998), 175. doi: 10.1016/S0377-2217(97)00256-7.

[14]

S. E. Kesen, M. D. Toksari, Z. Güngr and E. Güner, Analyzing the behaviors of virtual cells (VCs) and traditional manufacturing systems: Ant colony optimization (ACO)-based metamodels,, Computers and Operations Research, 36 (2009), 2275. doi: 10.1016/j.cor.2008.09.002.

[15]

H. Li and K. Womer, Optimizing the supply chain configuration for make-to-order manufacturing,, European Journal of Operational Research, 221 (2012), 118. doi: 10.1016/j.ejor.2012.03.025.

[16]

I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment,, Computers and Mathematics with Applications, 60 (2010), 1014. doi: 10.1016/j.camwa.2010.03.044.

[17]

I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems,, International Journal of Production Research, 49 (2011), 6517. doi: 10.1080/00207543.2010.524902.

[18]

I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system,, Journal of Manufacturing Systems, 31 (2012), 214. doi: 10.1016/j.jmsy.2011.07.007.

[19]

S. M. Mansouri, S. M. Moattar Husseini and S. T. Newman, A review of the modern approaches to multi-criteria cell design,, International Journal of Production Research, 38 (2000), 1201. doi: 10.1080/002075400189095.

[20]

M. T. Melo, S. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management, A review,, European Journal of Operational Research, 196 (2009), 401. doi: 10.1016/j.ejor.2008.05.007.

[21]

G. Nomden, J. Slomp and N. C. Suresh, Virtual manufacturing cells: A taxonomy of past research and identification of future research issues,, International Journal of Flexible Manufacturing Systems, 17 (2005), 71. doi: 10.1007/s10696-006-8122-1.

[22]

H. Osman and K. Demirli, A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection,, International Journal of Production Economics, 124 (2010), 97. doi: 10.1016/j.ijpe.2009.10.012.

[23]

P. P. Rao and R. P. Mohanty, Impact of cellular manufacturing on supply chain management: Exploration of interrelationships between design issues,, International Journal of Manufacturing Technology and Management, 5 (2003), 507. doi: 10.1504/IJMTM.2003.003706.

[24]

M. Rheault, J. Drolet and G. Abdulnour, Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment,, Computers & Industrial Engineering, 29 (1995), 221. doi: 10.1016/0360-8352(95)00075-C.

[25]

L. K. Saxena and P. K. Jain, An integrated model of dynamic cellular manufacturing and supply chain system design,, International Journal of Advance Manufacturing Technology, 62 (2012), 385. doi: 10.1007/s00170-011-3806-4.

[26]

J. Schaller, Incorporating cellular manufacturing into supply chain design,, International Journal of Production Research, 46 (2008), 4925. doi: 10.1080/00207540701348761.

[27]

D. Simchi-Levi, P. Kaminsky and R. Shankar, Designing and Managing the Supply Chain: Concepts,, Strategies and Case Studies, (2007).

[28]

J. Slomp, B. V. Chowdary and N. C. Suresh, Design of virtual manufacturing cells: A mathematical programming approach,, Robotics and Computer Integrated Manufacturing, 21 (2005), 273. doi: 10.1016/j.rcim.2004.11.001.

[29]

S. Talluri and R. C. Baker, A multi-phase mathematical programming approach for effective supply chain design,, European Journal of Operational Research, 141 (2002), 544. doi: 10.1016/S0377-2217(01)00277-6.

[30]

H. Uster and H. Agrahari, A Benders decomposition approach for a distribution network design problem with consolidation and capacity considerations,, Operational Research Letters, 39 (2011), 138. doi: 10.1016/j.orl.2011.02.003.

[31]

U. Wemmerlov and N. L. Hyer, Cellular manufacturing in the U. S. industry: A survey of users,, International Journal of Production Research, 27 (1989), 1511. doi: 10.1080/00207548908942637.

[1]

Biswajit Sarkar, Arunava Majumder, Mitali Sarkar, Bikash Koli Dey, Gargi Roy. Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1085-1104. doi: 10.3934/jimo.2016063

[2]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[3]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks & Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[4]

Pin-Shou Ting. The EPQ model with deteriorating items under two levels of trade credit in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (2) : 479-492. doi: 10.3934/jimo.2015.11.479

[5]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[6]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[7]

Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial & Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263

[8]

Xinxin Tan, Shujuan Li, Sisi Liu, Zhiwei Zhao, Lisa Huang, Jiatai Gang. Dynamic simulation of a SEIQR-V epidemic model based on cellular automata. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 327-337. doi: 10.3934/naco.2015.5.327

[9]

Shi'an Wang, N. U. Ahmed. Optimum management of the network of city bus routes based on a stochastic dynamic model. Journal of Industrial & Management Optimization, 2019, 15 (2) : 619-631. doi: 10.3934/jimo.2018061

[10]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[11]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[12]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[13]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[14]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[15]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[16]

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391

[17]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[18]

Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial & Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039

[19]

Katherinne Salas Navarro, Jaime Acevedo Chedid, Whady F. Florez, Holman Ospina Mateus, Leopoldo Eduardo Cárdenas-Barrón, Shib Sankar Sana. A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019020

[20]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]