January  2017, 13(1): 1-21. doi: 10.3934/jimo.2016001

Optimal dividends and capital injections for a spectrally positive Lévy process

a, c. 

School of Statistics, Qufu Normal University, Shandong 273165, China

b. 

School of Finance and Statistics, East China Normal University, Shanghai 200241, China

Received  April 2015 Revised  June 2015 Published  March 2016

Fund Project: The authors acknowledge the financial support of National Natural Science Foundation of China (11231005,11201123,11501321), Promotive research fund for excellent young and middle-aged scientists of Shandong Province (BS2014SF006), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (15KJB110009) and Postdoctoral Foundation of Qufu Normal University. The authors would like to thank the anonymous referees for help

This paper investigates an optimal dividend and capital injection problem for a spectrally positive Lévy process, where the dividend rate is restricted. Both the ruin penalty and the costs from the transactions of capital injection are considered. The objective is to maximize the total value of the expected discounted dividends, the penalized discounted capital injections before ruin, and the expected discounted ruin penalty. By the fluctuation theory of Lévy processes, the optimal dividend and capital injection strategy is obtained. We also find that the optimal return function can be expressed in terms of the scale functions of Lévy processes. Besides, a series of numerical examples are provided to illustrate our consults.

Citation: Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial & Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001
References:
[1]

B. AvanziH. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model, Insurance: Mathematics and Economics, 41 (2007), 111-123. doi: 10.1016/j.insmatheco.2006.10.002.

[2]

B. Avanzi and H. U. Gerber, Optimal dividends in the dual model with diffusion, Astin Bulletin, 38 (2008), 653-667. doi: 10.2143/AST.38.2.2033357.

[3]

B. AvanziJ. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion, ASTIN Bulletin, 41 (2011), 611-644. doi: 10.2139/ssrn.1709174.

[4]

E. BayraktarA. Kyprianou and K. Yamazaki, On optimal dividends in the dual model, ASTIN Bulletin, 43 (2013), 359-372. doi: 10.1017/asb.2013.17.

[5]

E. BayraktarA. Kyprianou and K. Yamazaki, Optimal dividends in the dual model under transaction costs, Insurance: Mathematics and Economics, 54 (2014), 133-143. doi: 10.1016/j.insmatheco.2013.11.007.

[6]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, 1996.

[7]

T. ChanA. E. Kyprianou and M. Savov, Smoothness of scale functions for spectrally negative Lévy processes, Probability Theory and Related Fields, 150 (2011), 129-143. doi: 10.1007/s00440-010-0289-4.

[8]

M. Egami and K. Yamazaki, Phase-type fitting of scale functions for spectrally negative Lévy process, Journal of Computational and Applied Mathematics, 264 (2014), 1-22. doi: 10.1016/j.cam.2013.12.044.

[9] W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, 2 edition, Springer Verlag, New York, 2006.
[10]

A. KuznetsovA. E. Kyprianou and V. Rivero, The theory of scale functions for spectrally negative Lévy processes, Lévy Matters Ⅱ, Lecture Notes in Mathematics, (2013), 97-186. doi: 10.1007/978-3-642-31407-0_2.

[11] A.E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications, Universitext, Springer-Verlag, Berlin, 2006.
[12]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin, Insurance: Mathematics and Economics, 50 (2012), 437-445. doi: 10.1016/j.insmatheco.2012.02.005.

[13]

X. PengM. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs, Insurance: Mathematics and Economics, 51 (2012), 576-585. doi: 10.1016/j.insmatheco.2012.08.004.

[14]

N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs, European Actuarial Journal, 1 (2011), 57-92. doi: 10.1007/s13385-011-0007-3.

[15]

D. YaoH. Yang and R. Wang, Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle, Economic Modelling, 37 (2014), 53-64. doi: 10.1016/j.econmod.2013.10.026.

[16]

D. YaoH. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs, European Journal of Operational Research, 211 (2011), 568-576. doi: 10.1016/j.ejor.2011.01.015.

[17]

D. YaoR. Wang and L. Xu, Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model, Journal of Industrial and Management Optimization, 10 (2014), 1235-1259. doi: 10.3934/jimo.2014.10.1235.

[18]

C. YinY. Wen and Y. Zhao, On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, (2014), 635-651. doi: 10.1017/asb.2014.12.

[19]

Y. ZhaoR. WangD. Yao and P. Chen, Optimal dividends and capital injections in the dual model with a random time horizon, Journal of Optimization Theory and Applications, 167 (2014), 272-295. doi: 10.1007/s10957-014-0653-0.

show all references

References:
[1]

B. AvanziH. U. Gerber and E. S. W. Shiu, Optimal dividends in the dual model, Insurance: Mathematics and Economics, 41 (2007), 111-123. doi: 10.1016/j.insmatheco.2006.10.002.

[2]

B. Avanzi and H. U. Gerber, Optimal dividends in the dual model with diffusion, Astin Bulletin, 38 (2008), 653-667. doi: 10.2143/AST.38.2.2033357.

[3]

B. AvanziJ. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion, ASTIN Bulletin, 41 (2011), 611-644. doi: 10.2139/ssrn.1709174.

[4]

E. BayraktarA. Kyprianou and K. Yamazaki, On optimal dividends in the dual model, ASTIN Bulletin, 43 (2013), 359-372. doi: 10.1017/asb.2013.17.

[5]

E. BayraktarA. Kyprianou and K. Yamazaki, Optimal dividends in the dual model under transaction costs, Insurance: Mathematics and Economics, 54 (2014), 133-143. doi: 10.1016/j.insmatheco.2013.11.007.

[6]

J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, 1996.

[7]

T. ChanA. E. Kyprianou and M. Savov, Smoothness of scale functions for spectrally negative Lévy processes, Probability Theory and Related Fields, 150 (2011), 129-143. doi: 10.1007/s00440-010-0289-4.

[8]

M. Egami and K. Yamazaki, Phase-type fitting of scale functions for spectrally negative Lévy process, Journal of Computational and Applied Mathematics, 264 (2014), 1-22. doi: 10.1016/j.cam.2013.12.044.

[9] W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, 2 edition, Springer Verlag, New York, 2006.
[10]

A. KuznetsovA. E. Kyprianou and V. Rivero, The theory of scale functions for spectrally negative Lévy processes, Lévy Matters Ⅱ, Lecture Notes in Mathematics, (2013), 97-186. doi: 10.1007/978-3-642-31407-0_2.

[11] A.E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications, Universitext, Springer-Verlag, Berlin, 2006.
[12]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin, Insurance: Mathematics and Economics, 50 (2012), 437-445. doi: 10.1016/j.insmatheco.2012.02.005.

[13]

X. PengM. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs, Insurance: Mathematics and Economics, 51 (2012), 576-585. doi: 10.1016/j.insmatheco.2012.08.004.

[14]

N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs, European Actuarial Journal, 1 (2011), 57-92. doi: 10.1007/s13385-011-0007-3.

[15]

D. YaoH. Yang and R. Wang, Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle, Economic Modelling, 37 (2014), 53-64. doi: 10.1016/j.econmod.2013.10.026.

[16]

D. YaoH. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs, European Journal of Operational Research, 211 (2011), 568-576. doi: 10.1016/j.ejor.2011.01.015.

[17]

D. YaoR. Wang and L. Xu, Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model, Journal of Industrial and Management Optimization, 10 (2014), 1235-1259. doi: 10.3934/jimo.2014.10.1235.

[18]

C. YinY. Wen and Y. Zhao, On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, (2014), 635-651. doi: 10.1017/asb.2014.12.

[19]

Y. ZhaoR. WangD. Yao and P. Chen, Optimal dividends and capital injections in the dual model with a random time horizon, Journal of Optimization Theory and Applications, 167 (2014), 272-295. doi: 10.1007/s10957-014-0653-0.

Figure 1.  LEFT: The influence of $l_0$ on $\eta$, $x_p^*$, $x_q^*$ and $x^*$. RIGHT: The influence of $l_0$ on the value function
Figure 2.  LEFT: The influence of $\delta$ on $\eta$, $x_p^*$, $x_q^*$ and $x^*$. RIGHT: The influence of $\delta$ on the value function
Figure 3.  LEFT: The influence of $\sigma$ on $\eta$, $x_p^*$, $x_q^*$ and $x^*$. RIGHT: The influence of $\sigma$ on the value function
Table 1.  The influence of P on xp* and x*
P $\mathcal{I}$ -1 0 0.5 0.8380 1 1.4 1.5
xp* 0 0.1601 1.0765 1.4922 1.7590 1.8830 2.1794 2.2509
xq* 1.7590 1.7590 1.7590 1.7590 1.7590 1.7590 1.7590 1.7590
x* xp* xp* xp* xp* xp*=xq* xq* xq* xq*
P $\mathcal{I}$ -1 0 0.5 0.8380 1 1.4 1.5
xp* 0 0.1601 1.0765 1.4922 1.7590 1.8830 2.1794 2.2509
xq* 1.7590 1.7590 1.7590 1.7590 1.7590 1.7590 1.7590 1.7590
x* xp* xp* xp* xp* xp*=xq* xq* xq* xq*
Table 2.  The influences of ϕ and K on η, xq* and x*
ϕ = 1:1 K=0.1
K↑ 0.12 0.1256 0.14 ϕ 1.12 1.1226 1.14
η 1.1753 1.2011 1.2649 1.0623 1.0604 1.0481
xq* 1.8572 1.8830 1.9467 1.8687 1.8830 1.9755
x* xq* xq*=xp* xp* xq* xq*=xp* xp*
ϕ = 1:1 K=0.1
K↑ 0.12 0.1256 0.14 ϕ 1.12 1.1226 1.14
η 1.1753 1.2011 1.2649 1.0623 1.0604 1.0481
xq* 1.8572 1.8830 1.9467 1.8687 1.8830 1.9755
x* xq* xq*=xp* xp* xq* xq*=xp* xp*
[1]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235

[2]

Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial & Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051

[3]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[4]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial & Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

[5]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[6]

Manman Li, George Yin. Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model. Journal of Industrial & Management Optimization, 2019, 15 (2) : 517-535. doi: 10.3934/jimo.2018055

[7]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[8]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[9]

Linlin Tian, Xiaoyi Zhang, Yizhou Bai. Optimal dividend of compound poisson process under a stochastic interest rate. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019047

[10]

Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247

[11]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[12]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[13]

Rachel Chen, Jianqiang Hu, Yijie Peng. Simulation of Lévy-Driven models and its application in finance. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 749-765. doi: 10.3934/naco.2012.2.749

[14]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[15]

Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209

[16]

Chaman Kumar, Sotirios Sabanis. On tamed milstein schemes of SDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 421-463. doi: 10.3934/dcdsb.2017020

[17]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-54. doi: 10.3934/dcdsb.2018331

[18]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial & Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[19]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-24. doi: 10.3934/dcdsb.2019081

[20]

David Ginzburg and Joseph Hundley. The adjoint $L$-function for $GL_5$. Electronic Research Announcements, 2008, 15: 24-32. doi: 10.3934/era.2008.15.24

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (38)
  • HTML views (258)
  • Cited by (1)

Other articles
by authors

[Back to Top]