\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homotopy method for a class of multiobjective optimization problems with equilibrium constraints

  • *Corresponding author: Qinghuai Liu

    *Corresponding author: Qinghuai Liu
The first author is supported by (Grant No.51278065) and the Jilin Province Natural Science Foundation (Grant No.20130101061 JC.).
Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • In this paper, we present a combined homotopy interior point method for solving multiobjective programs with equilibrium constraints. Under suitable conditions, we prove the existence and convergence of a smooth homotopy path from almost any interior point to a solution of the K-K-T system. Numerical results are presented to show the effectiveness of this algorithm.

    Mathematics Subject Classification: Primary: 90C30; Secondary: 65H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The numerical results of Example1.

    $(x_1^{(0)}, x_2^{(0)}, y_1^{(0)}, y_2^{(0)}, t^{(0)})$$(x_1^*, x_2^*, y_1^*, y_2^*, t^*)$$(f_1^*, f_2^*)$
    (3.3750, 9.2500, -6.2500, -0.3750, 1)(0.2230, -0.0470, -1.8319, 0.3554, 0.0001)(2.2732, 0.0373)
    (2.0625, 7.3750, -5.3750, -0.0625, 1)(0.2231, -0.0473, -1.8318, 0.3554, 0.0001)(2.2735, 0.0372)
    (4.8750, 13.4500, -9.6500, -1.0750, 1) (-4.2060, 1.0421, 2.9579, -4.9790, 0.0001)(61.9144, 2.2810)
    (4.6875, 12.6250, -8.875, -0.9375, 1) (-4.2059, 1.0423, 2.9577, -4.9788, 0.0001)(61.9122, 2.2811)
     | Show Table
    DownLoad: CSV

    Table 2.  The numerical results of Example2.

    $(x_1^{(0)}, x_2^{(0)}, y_1^{(0)}, y_2^{(0)}, t^{(0)})$$(x_1^*, x_2^*, y_1^*, y_2^*, t^*)$$(f_1^*, f_2^*)$
    (0, 3.1380, 0.9653, -2.0545, 1)(-2.2955, -0.7998, 1.1667, -2.6666, 0.0001)(9.4784, 0.9151)
    (3.5326, 0, 0.8932, -1.8410, 1)(-2.2954, -0.7999, 1.1666, -2.6666, 0.0001)(9.4773, 0.9154)
    (4.2426, 0, 0.7826, -1.5217, 0.5, 1)(-2.9356, -1.1234, 1.2501, -2.9256, 0.0001)(12.0080, 1.2622)
    (7.4907, 0, 0.8333, -1.6667, 0.4, 1)(-2.9356, -1.1234, 1.2501, -2.9254, 0.0001)(12.0072, 1.2622)
     | Show Table
    DownLoad: CSV
  • [1] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer-Verlag, Berlin-New York, 1990. doi: 10.1007/978-3-642-61257-2.
    [2] T. Q. BaoP. Gupta and B. S. Mordukhovich, Necessary conditions in multiobjective optimization with equilibrium constraints, J. Optim. Theory Appl., 135 (2007), 179-203.  doi: 10.1007/s10957-007-9209-x.
    [3] S. N. ChowJ. Mallet-Paret and J. A. Yorke, Finding zeros of maps: Homotopy methods that are constructive with probability one, Math. Compu., 13 (1978), 887-899.  doi: 10.1090/S0025-5718-1978-0492046-9.
    [4] S. Dempe, Annotated bibliographa on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52 (2003), 333-359.  doi: 10.1080/0233193031000149894.
    [5] X. N. Fan and Q. L. Yan, Homotopy method for solving ball-constrained variational inequalities, Nonlinear Analysis, 74 (2011), 1539-1544.  doi: 10.1016/j.na.2010.09.041.
    [6] M. Fukushima and P. Tseng, An Implementable Active-Set Algorithm for Computing a B-Stationary Point of the Mathematical Program with Linear Complementarity Constraints, Manuscript, Department of Applied Mathematics and Physics, Graduate School of Informations, Kyoto University, Japan, 1999.
    [7] M. Fukushima and P. Tseng, An Implementable active-set algorithm for computing a b-stationary point of mathematical program with linear complemetarity constraints, SIAM J. Optim., 12 (2002), 724-739.  doi: 10.1137/S1052623499363232.
    [8] L. Guo and G. H. Lin, Globally convergent algorithm for solving stationary points for mathematical programs with complementarity constraints via nonsmooth reformulations, Journal of Industrial and Management Optimization, 9 (2013), 305-322.  doi: 10.3934/jimo.2013.9.305.
    [9] L. GuoG. H. Lin and J. J. Ye, Stability analysis for parametric mathematical programs with geometric constraints and its applications, SIAM Journal on Optimization, 22 (2012), 1151-1176.  doi: 10.1137/120868657.
    [10] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and non-linear complementarity problem: A survey of theory, algorithms and applications, Mathematical Programming, 48 (1990), 161-220.  doi: 10.1007/BF01582255.
    [11] R. B. KelloggT. Y. Li and J. Yorke, A constructive proof the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.  doi: 10.1137/0713041.
    [12] M. Ko$ \overset{''}{\mathop{\text{c}}}\, $vara and J. V. Outrata, Optimization problems with equilibrium constraints and their numerical solution, Math. Program. Ser. B, 101 (2004), 119-149.  doi: 10.1007/s10107-004-0539-2.
    [13] J. M. Li, Combined Homotopy Interior-Point Method for Solving Mathematical Programs with Equilibrium Constraints, Ph. D. thesis, Ji Lin University, 2007.
    [14] Z. H. LinB. Yu and D. L. Zhu, A continuation method for solving fixed points of self-mappings in general nonconvex sets, Nonlinear Analysis, 52 (2003), 905-915.  doi: 10.1016/S0362-546X(02)00140-2.
    [15] X. W. Liu and J. Sun, Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints, Math. Program. Ser. B, 101 (2004), 231-261.  doi: 10.1007/s10107-004-0543-6.
    [16] Q. H. LiuB. Yu and G. C. Feng, An interior point path-following method for convex programming with quasi normal cone condition, Advances in Mathematics, 29 (2000), 281-282. 
    [17] Z. Q. Luo, J. S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511983658.
    [18] M. M. M$ \overset{''}{\mathop{\text{a}}}\, $kel$ \overset{''}{\mathop{\text{a}}}\, $ and P. Neittaanm$ \overset{''}{\mathop{\text{a}}}\, $ki, Nonsmooth Optimization: Analysis And Algorithms with Applications to Optimal Control, World Scientific Publishing Co. Pte. Ltd., 1992.
    [19] O. L. Mangasarian, Nonlinear Programming, McGraw-Hill Book Company, New York, 1969; Japanese Edition, 1971; SIAM Classics in Applied Mathematics, 10, Philadelphia, 1994. doi: 10.1137/1.9781611971255.
    [20] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, : Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Springer, Berlin, 2006.
    [21] B. S. Mordukhovich, Multiobjective optimization problems with equilibrium constraints, Math. Program. Ser. B, 117 (2009), 331-354.  doi: 10.1007/s10107-007-0172-y.
    [22] G. L. Naber, Topological Methods in Euclidean Spaces, Cambridge University Press, Cambridge, UK, 1980.
    [23] S. Smale, A convergent process of price adjustment and global Newton methods, J. Math. Econom., 3 (1976), 107-120.  doi: 10.1016/0304-4068(76)90019-7.
    [24] W. Song and G. M. Yao, Homotopy method for a general multiobjective programming problem, Journal of Optimization Theory and Applications, 138 (2008), 139-153.  doi: 10.1007/s10957-008-9366-6.
    [25] Q. XuB. Yu and G. C. Feng, Homotopy method for solving variational inequalities in unbounded sets, Journal of Global Optimization, 31 (2005), 121-131.  doi: 10.1007/s10898-004-4272-4.
    [26] Q. Xu and B. Yu, Solving the Karush-Kuhn-Tucker system of a nonconvex programming problem on an unbounded sets, Nonlinear Analysis, 70 (2009), 757-763.  doi: 10.1016/j.na.2008.01.008.
    [27] J. J. Ye and Q. J. Zhu, Multiobjective optimization problem with variational inequality constraints, Math. Program. Ser. A, 96 (2003), 139-160.  doi: 10.1007/s10107-002-0365-3.
    [28] Z. S. Zhang, Introduction to Differential Topology, Beijing University Press, Beijing, China, 2002.
    [29] X. Zhao, S. G. Zhang and Q. H. Liu, Homotopy interior-point method for a general multiobjective programming problem Journal of Applied Mathematics, (2012), Art. ID 497345, 12pp. doi: 10.1155/2012/497345.
    [30] Z. Y. Zhou and B. Yu, A smoothing homotopy method for variational inequality problems on polyhedral convex sets, J. Glob Optim., 58 (2013), 151-168.  doi: 10.1007/s10898-013-0033-6.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(2506) PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return