[1]
|
E. L. Allgower and K. Georg,
Numerical Continuation Methods: An Introduction, Springer-Verlag, Berlin-New York, 1990.
doi: 10.1007/978-3-642-61257-2.
|
[2]
|
T. Q. Bao, P. Gupta and B. S. Mordukhovich, Necessary conditions in multiobjective optimization with equilibrium constraints, J. Optim. Theory Appl., 135 (2007), 179-203.
doi: 10.1007/s10957-007-9209-x.
|
[3]
|
S. N. Chow, J. Mallet-Paret and J. A. Yorke, Finding zeros of maps: Homotopy methods that are constructive with probability one, Math. Compu., 13 (1978), 887-899.
doi: 10.1090/S0025-5718-1978-0492046-9.
|
[4]
|
S. Dempe, Annotated bibliographa on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52 (2003), 333-359.
doi: 10.1080/0233193031000149894.
|
[5]
|
X. N. Fan and Q. L. Yan, Homotopy method for solving ball-constrained variational inequalities, Nonlinear Analysis, 74 (2011), 1539-1544.
doi: 10.1016/j.na.2010.09.041.
|
[6]
|
M. Fukushima and P. Tseng,
An Implementable Active-Set Algorithm for Computing a B-Stationary Point of the Mathematical Program with Linear Complementarity Constraints, Manuscript, Department of Applied Mathematics and Physics, Graduate School of Informations, Kyoto University, Japan, 1999.
|
[7]
|
M. Fukushima and P. Tseng, An Implementable active-set algorithm for computing a b-stationary point of mathematical program with linear complemetarity constraints, SIAM J. Optim., 12 (2002), 724-739.
doi: 10.1137/S1052623499363232.
|
[8]
|
L. Guo and G. H. Lin, Globally convergent algorithm for solving stationary points for mathematical programs with complementarity constraints via nonsmooth reformulations, Journal of Industrial and Management Optimization, 9 (2013), 305-322.
doi: 10.3934/jimo.2013.9.305.
|
[9]
|
L. Guo, G. H. Lin and J. J. Ye, Stability analysis for parametric mathematical programs with geometric constraints and its applications, SIAM Journal on Optimization, 22 (2012), 1151-1176.
doi: 10.1137/120868657.
|
[10]
|
P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and non-linear complementarity problem: A survey of theory, algorithms and applications, Mathematical Programming, 48 (1990), 161-220.
doi: 10.1007/BF01582255.
|
[11]
|
R. B. Kellogg, T. Y. Li and J. Yorke, A constructive proof the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.
doi: 10.1137/0713041.
|
[12]
|
M. Ko$ \overset{''}{\mathop{\text{c}}}\, $vara and J. V. Outrata, Optimization problems with equilibrium constraints and their numerical solution, Math. Program. Ser. B, 101 (2004), 119-149.
doi: 10.1007/s10107-004-0539-2.
|
[13]
|
J. M. Li,
Combined Homotopy Interior-Point Method for Solving Mathematical Programs with Equilibrium Constraints, Ph. D. thesis, Ji Lin University, 2007.
|
[14]
|
Z. H. Lin, B. Yu and D. L. Zhu, A continuation method for solving fixed points of self-mappings in general nonconvex sets, Nonlinear Analysis, 52 (2003), 905-915.
doi: 10.1016/S0362-546X(02)00140-2.
|
[15]
|
X. W. Liu and J. Sun, Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints, Math. Program. Ser. B, 101 (2004), 231-261.
doi: 10.1007/s10107-004-0543-6.
|
[16]
|
Q. H. Liu, B. Yu and G. C. Feng, An interior point path-following method for convex programming with quasi normal cone condition, Advances in Mathematics, 29 (2000), 281-282.
|
[17]
|
Z. Q. Luo, J. S. Pang and D. Ralph,
Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511983658.
|
[18]
|
M. M. M$ \overset{''}{\mathop{\text{a}}}\, $kel$ \overset{''}{\mathop{\text{a}}}\, $ and P. Neittaanm$ \overset{''}{\mathop{\text{a}}}\, $ki, Nonsmooth Optimization: Analysis And Algorithms with Applications to Optimal Control, World Scientific Publishing Co. Pte. Ltd., 1992.
|
[19]
|
O. L. Mangasarian,
Nonlinear Programming, McGraw-Hill Book Company, New York, 1969; Japanese Edition, 1971; SIAM Classics in Applied Mathematics, 10, Philadelphia, 1994.
doi: 10.1137/1.9781611971255.
|
[20]
|
B. S. Mordukhovich,
Variational Analysis and Generalized Differentiation, Ⅱ: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Springer, Berlin, 2006.
|
[21]
|
B. S. Mordukhovich, Multiobjective optimization problems with equilibrium constraints, Math. Program. Ser. B, 117 (2009), 331-354.
doi: 10.1007/s10107-007-0172-y.
|
[22]
|
G. L. Naber,
Topological Methods in Euclidean Spaces, Cambridge University Press, Cambridge, UK, 1980.
|
[23]
|
S. Smale, A convergent process of price adjustment and global Newton methods, J. Math. Econom., 3 (1976), 107-120.
doi: 10.1016/0304-4068(76)90019-7.
|
[24]
|
W. Song and G. M. Yao, Homotopy method for a general multiobjective programming problem, Journal of Optimization Theory and Applications, 138 (2008), 139-153.
doi: 10.1007/s10957-008-9366-6.
|
[25]
|
Q. Xu, B. Yu and G. C. Feng, Homotopy method for solving variational inequalities in unbounded sets, Journal of Global Optimization, 31 (2005), 121-131.
doi: 10.1007/s10898-004-4272-4.
|
[26]
|
Q. Xu and B. Yu, Solving the Karush-Kuhn-Tucker system of a nonconvex programming problem on an unbounded sets, Nonlinear Analysis, 70 (2009), 757-763.
doi: 10.1016/j.na.2008.01.008.
|
[27]
|
J. J. Ye and Q. J. Zhu, Multiobjective optimization problem with variational inequality constraints, Math. Program. Ser. A, 96 (2003), 139-160.
doi: 10.1007/s10107-002-0365-3.
|
[28]
|
Z. S. Zhang,
Introduction to Differential Topology, Beijing University Press, Beijing, China, 2002.
|
[29]
|
X. Zhao, S. G. Zhang and Q. H. Liu, Homotopy interior-point method for a general multiobjective programming problem Journal of Applied Mathematics, (2012), Art. ID 497345, 12pp.
doi: 10.1155/2012/497345.
|
[30]
|
Z. Y. Zhou and B. Yu, A smoothing homotopy method for variational inequality problems on polyhedral convex sets, J. Glob Optim., 58 (2013), 151-168.
doi: 10.1007/s10898-013-0033-6.
|