January  2017, 13(1): 135-146. doi: 10.3934/jimo.2016008

$ (Q,r) $ Model with $ CVaR_α $ of costs minimization

1. 

School of Engineering, University of Medellín, Medellín 3300, Colombia

2. 

Basic Sciences Department, EAFIT University, Medellín 3300, Colombia

3. 

Risk Engineering, Empresas Públicas de Medellín, Medellín 3300, Colombia

Received  February 2013 Revised  April 2015 Published  March 2016

Fund Project: The first and third authors are supported by Medellín University project SIDI 489. The second and forth authors are supported by EAFIT University project SIDI 220-000001 .

In the classical stochastic continuous review, $ (Q,r) $ model [18, 19], the inventory cost $ c(Q,r) $ has an averaging term which is given as an integral of the expected costs over the different inventory positions during the lead time on any given cycle. The main objective of the article is to study risk averse optimization in the classical $ (Q,r) $ model using $ CVaR_{α} $ as a coherent risk measure with respect to the probability distribution of the demand $ D $ on inventory position costs (the sum of the inventory holding and backorder penality cost), for any given (generic) confidence level $ α∈[0,1) $.

We show that the objective function is jointly convex in $ (Q,r) $. We also compare the risk averse solution and some other solutions in both analytical and computational ways. Additionally, some general and useful results are obtained.

Citation: María Andrea Arias Serna, María Eugenia Puerta Yepes, César Edinson Escalante Coterio, Gerardo Arango Ospina. $ (Q,r) $ Model with $ CVaR_α $ of costs minimization. Journal of Industrial & Management Optimization, 2017, 13 (1) : 135-146. doi: 10.3934/jimo.2016008
References:
[1]

S. AhmedU. Cakmak and A. Shapiro, Coherent risk measures in inventory problems, European Journal of Operational Research, 1 (2007), 226-238.  doi: 10.1016/j.ejor.2006.07.016.  Google Scholar

[2]

P. ArtznerF. DelbaenJ. Eber and D. Heath, Coherent measure of risk, Mathematical Finance, 9 (1999), 203-227.  doi: 10.1111/1467-9965.00068.  Google Scholar

[3]

X. ChenM. SimD. Simchi-Levi and P. Sun, Risk aversion in inventory management, Operations Research, 55 (2007), 828-842.  doi: 10.1287/opre.1070.0429.  Google Scholar

[4]

L. Cheng and Z. Wana, Bilevel newsvendor models considering retailer with CVaR objective, Computers Industrial Engineering, 57 (2009), 310-318.  doi: 10.1016/j.cie.2008.12.002.  Google Scholar

[5]

A. Federgruen and Y. S. Zheng, A simple and efficient algorithm for computing optimal (r, Q) Policies in continuous-review stochastic inventory systems, Operations Research, 40 (1992), 808-813.  doi: 10.1287/opre.40.2.384.  Google Scholar

[6]

J. Gotoh and Y. Takano, Newsvendor solutions via conditional value-at-risk minimization, EuropeanJournal of Operational Research, 179 (2007), 80-96.  doi: 10.1016/j.ejor.2006.03.022.  Google Scholar

[7] G. Hadley and M. Whittin, Analysis of Inventory Systems, 2 edition, Prentice-Hall, New York, 1963.   Google Scholar
[8] W. J. Hopp and M. L. Spearman, Factory Physics, 2 edition, McGraw-Hill, New York, 2001.   Google Scholar
[9]

S. MoosaA. Mohammed and S. S. Yadavalli, A note on evaluating the risk in continuous review inventory systems, International Journal of Production Research, 47 (2009), 5543-5558.   Google Scholar

[10]

J. G. Murillo, M. A. Arias and L. C. Franco, Riesgo Operativo: Técnicas de modelación cuantitativa, 1st Sello Editorial Universidad de Medellín, Colombia, 2014. Google Scholar

[11]

G. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk, in Probabilistic Constrained Optimization, Nonconvex Optim. Appl., 49, Kluwer Acad. Publ., Dordrecht, 2000,272-281. doi: 10.1007/978-1-4757-3150-7_15.  Google Scholar

[12]

D. E. PlattL. W. Robinson and R. B. Freund, Tractable (Q, R) heuristic models for constrained service levels, Management Science, 43 (1997), 951-965.  doi: 10.1287/mnsc.43.7.951.  Google Scholar

[13]

M. E. Puerta, M. A. Arias and J. I. Londoño, Matemáticas Aplicadas: Optimización de Inventarios Aleatorios, 1st Sello Editorial Universidad de Medellín, Colombia, 2011. Google Scholar

[14]

R. T. Rockafellar and S. P. Uryasev, Conditional Value-at-Risk for general loss distributions, Journal of Banking and Finance, 23 (2002), 1443-1471.   Google Scholar

[15]

H. N. ShiD. Li and Ch. Gu, The Schur-convexity of the mean of a convex function, Applied Mathematics Letters, 22 (2009), 932-937.  doi: 10.1016/j.aml.2008.04.017.  Google Scholar

[16]

R. VinodS. Amitabh and J. B. Raturi, On incorporating business risk into continuous review inventory models, European Journal of Operational Research, 75 (1994), 136-150.   Google Scholar

[17]

X. M. Zhang and Y. M. Chu, Convexity of the integral arithmetic mean of a convex function, Rocky Mountain Journal of Mathematics, 40 (2010), 1061-1068.  doi: 10.1216/RMJ-2010-40-3-1061.  Google Scholar

[18]

Y. Zheng, On properties of stochastic inventory systems, Rocky Mountain Journal of Mathematics, 38 (1992), 87-101.  doi: 10.1287/mnsc.38.1.87.  Google Scholar

[19] P. H. Zipkin, Foundations of Inventory Management, 2 edition, McGraw-Hill, New York, 2000.   Google Scholar

show all references

References:
[1]

S. AhmedU. Cakmak and A. Shapiro, Coherent risk measures in inventory problems, European Journal of Operational Research, 1 (2007), 226-238.  doi: 10.1016/j.ejor.2006.07.016.  Google Scholar

[2]

P. ArtznerF. DelbaenJ. Eber and D. Heath, Coherent measure of risk, Mathematical Finance, 9 (1999), 203-227.  doi: 10.1111/1467-9965.00068.  Google Scholar

[3]

X. ChenM. SimD. Simchi-Levi and P. Sun, Risk aversion in inventory management, Operations Research, 55 (2007), 828-842.  doi: 10.1287/opre.1070.0429.  Google Scholar

[4]

L. Cheng and Z. Wana, Bilevel newsvendor models considering retailer with CVaR objective, Computers Industrial Engineering, 57 (2009), 310-318.  doi: 10.1016/j.cie.2008.12.002.  Google Scholar

[5]

A. Federgruen and Y. S. Zheng, A simple and efficient algorithm for computing optimal (r, Q) Policies in continuous-review stochastic inventory systems, Operations Research, 40 (1992), 808-813.  doi: 10.1287/opre.40.2.384.  Google Scholar

[6]

J. Gotoh and Y. Takano, Newsvendor solutions via conditional value-at-risk minimization, EuropeanJournal of Operational Research, 179 (2007), 80-96.  doi: 10.1016/j.ejor.2006.03.022.  Google Scholar

[7] G. Hadley and M. Whittin, Analysis of Inventory Systems, 2 edition, Prentice-Hall, New York, 1963.   Google Scholar
[8] W. J. Hopp and M. L. Spearman, Factory Physics, 2 edition, McGraw-Hill, New York, 2001.   Google Scholar
[9]

S. MoosaA. Mohammed and S. S. Yadavalli, A note on evaluating the risk in continuous review inventory systems, International Journal of Production Research, 47 (2009), 5543-5558.   Google Scholar

[10]

J. G. Murillo, M. A. Arias and L. C. Franco, Riesgo Operativo: Técnicas de modelación cuantitativa, 1st Sello Editorial Universidad de Medellín, Colombia, 2014. Google Scholar

[11]

G. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk, in Probabilistic Constrained Optimization, Nonconvex Optim. Appl., 49, Kluwer Acad. Publ., Dordrecht, 2000,272-281. doi: 10.1007/978-1-4757-3150-7_15.  Google Scholar

[12]

D. E. PlattL. W. Robinson and R. B. Freund, Tractable (Q, R) heuristic models for constrained service levels, Management Science, 43 (1997), 951-965.  doi: 10.1287/mnsc.43.7.951.  Google Scholar

[13]

M. E. Puerta, M. A. Arias and J. I. Londoño, Matemáticas Aplicadas: Optimización de Inventarios Aleatorios, 1st Sello Editorial Universidad de Medellín, Colombia, 2011. Google Scholar

[14]

R. T. Rockafellar and S. P. Uryasev, Conditional Value-at-Risk for general loss distributions, Journal of Banking and Finance, 23 (2002), 1443-1471.   Google Scholar

[15]

H. N. ShiD. Li and Ch. Gu, The Schur-convexity of the mean of a convex function, Applied Mathematics Letters, 22 (2009), 932-937.  doi: 10.1016/j.aml.2008.04.017.  Google Scholar

[16]

R. VinodS. Amitabh and J. B. Raturi, On incorporating business risk into continuous review inventory models, European Journal of Operational Research, 75 (1994), 136-150.   Google Scholar

[17]

X. M. Zhang and Y. M. Chu, Convexity of the integral arithmetic mean of a convex function, Rocky Mountain Journal of Mathematics, 40 (2010), 1061-1068.  doi: 10.1216/RMJ-2010-40-3-1061.  Google Scholar

[18]

Y. Zheng, On properties of stochastic inventory systems, Rocky Mountain Journal of Mathematics, 38 (1992), 87-101.  doi: 10.1287/mnsc.38.1.87.  Google Scholar

[19] P. H. Zipkin, Foundations of Inventory Management, 2 edition, McGraw-Hill, New York, 2000.   Google Scholar
Table 1.  $\lambda=50$, $L=1$, $h=10$, $p=25$, $\alpha=0.90$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$3.7$$8$$7$$48.9$$50$$54$$26.73$$95.68$$227.90$
$5$$250$$8.4$$13$$12$$47.6$$48$$52$$59.76$$115.48$$252.64$
$25$$1250$$18.7$$24$$20$$44.7$$44$$50$$133.63$$171.49$$318.37$
$100$$5000$$37.4$$41$$39$$39.3$$38$$44$$267.26$$289.39$$448.09$
$1000$$50000$$118.3$$121$$120$$16.2$$15$$21$$845.15$$852.56$$1023.23$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$3.7$$8$$7$$48.9$$50$$54$$26.73$$95.68$$227.90$
$5$$250$$8.4$$13$$12$$47.6$$48$$52$$59.76$$115.48$$252.64$
$25$$1250$$18.7$$24$$20$$44.7$$44$$50$$133.63$$171.49$$318.37$
$100$$5000$$37.4$$41$$39$$39.3$$38$$44$$267.26$$289.39$$448.09$
$1000$$50000$$118.3$$121$$120$$16.2$$15$$21$$845.15$$852.56$$1023.23$
Table 2.  $\lambda=50$, $L=1$, $h=10$, $p=25$, $\alpha=0.965$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$3.7$$8$$6$$48.9$$50$$56$$26.73$$95.68$$269.24$
$5$$250$$8.4$$13$$11$$47.6$$48$$54$$59.76$$115.48$$295.01$
$25$$1250$$18.7$$24$$21$$44.7$$44$$51$$133.63$$171.49$$362.73$
$100$$5000$$37.4$$41$$39$$39.3$$38$$46$$267.26$$289.39$$493.90$
$1000$$50000$$118.3$$121$$120$$16.2$$15$$23$$845.15$$852.56$$1068.81$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$3.7$$8$$6$$48.9$$50$$56$$26.73$$95.68$$269.24$
$5$$250$$8.4$$13$$11$$47.6$$48$$54$$59.76$$115.48$$295.01$
$25$$1250$$18.7$$24$$21$$44.7$$44$$51$$133.63$$171.49$$362.73$
$100$$5000$$37.4$$41$$39$$39.3$$38$$46$$267.26$$289.39$$493.90$
$1000$$50000$$118.3$$121$$120$$16.2$$15$$23$$845.15$$852.56$$1068.81$
Table 3.  $\lambda=50$, $L=1$, $h=25$, $p=25$, $\alpha=0.90$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$2.8$$6$$4$$48.6$$46$$48$$35.36$$153.35$$381.80$
$5$$250$$6.3$$11$$8$$46.9$$44$$46$$79.06$$177.25$$413.29$
$25$$1250$$14.1$$19$$15$$43.0$$40$$42$$176.78$$245.58$$499.99$
$100$$5000$$28.3$$31$$29$$35.9$$34$$35$$353.55$$670.96$$671.36$
$1000$$50000$$89.4$$91$$90$$5.3$$4$$5$$1118.03$$1131.89$$1431.33$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$2.8$$6$$4$$48.6$$46$$48$$35.36$$153.35$$381.80$
$5$$250$$6.3$$11$$8$$46.9$$44$$46$$79.06$$177.25$$413.29$
$25$$1250$$14.1$$19$$15$$43.0$$40$$42$$176.78$$245.58$$499.99$
$100$$5000$$28.3$$31$$29$$35.9$$34$$35$$353.55$$670.96$$671.36$
$1000$$50000$$89.4$$91$$90$$5.3$$4$$5$$1118.03$$1131.89$$1431.33$
Table 4.  $\lambda=50$, $L=1$, $h=25$, $p=25$, $\alpha=0.965$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$2.8$$6$$7$$48.6$$46$$46$$35.36$$153.35$$466.68$
$5$$250$$6.3$$11$$8$$46.9$$44$$46$$79.06$$177.25$$495.40$
$25$$1250$$14.1$$19$$15$$43.0$$40$$43$$176.78$$245.58$$580.36$
$100$$5000$$28.3$$31$$29$$35.9$$34$$35$$353.55$$670.96$$750.45$
$1000$$50000$$89.4$$91$$90$$5.3$$4$$5$$1118.03$$1131.89$$1510.09$
$K$$\lambda K$$Q_d^*$$Q^*$$Q_{\alpha}^*$$r_d^*$$r^*$$r_{\alpha}^*$$c_d^*$$c^*$$c_{\alpha}^*$
$1$$50$$2.8$$6$$7$$48.6$$46$$46$$35.36$$153.35$$466.68$
$5$$250$$6.3$$11$$8$$46.9$$44$$46$$79.06$$177.25$$495.40$
$25$$1250$$14.1$$19$$15$$43.0$$40$$43$$176.78$$245.58$$580.36$
$100$$5000$$28.3$$31$$29$$35.9$$34$$35$$353.55$$670.96$$750.45$
$1000$$50000$$89.4$$91$$90$$5.3$$4$$5$$1118.03$$1131.89$$1510.09$
[1]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[2]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[5]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[6]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[7]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[8]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[9]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[10]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

[13]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[15]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[18]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[19]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[20]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[Back to Top]