In the classical stochastic continuous review, $ (Q,r) $ model [
We show that the objective function is jointly convex in $ (Q,r) $. We also compare the risk averse solution and some other solutions in both analytical and computational ways. Additionally, some general and useful results are obtained.
Citation: |
Table 1.
Table 2.
Table 3.
Table 4.
[1] |
S. Ahmed, U. Cakmak and A. Shapiro, Coherent risk measures in inventory problems, European Journal of Operational Research, 1 (2007), 226-238.
doi: 10.1016/j.ejor.2006.07.016.![]() ![]() ![]() |
[2] |
P. Artzner, F. Delbaen, J. Eber and D. Heath, Coherent measure of risk, Mathematical Finance, 9 (1999), 203-227.
doi: 10.1111/1467-9965.00068.![]() ![]() ![]() |
[3] |
X. Chen, M. Sim, D. Simchi-Levi and P. Sun, Risk aversion in inventory management, Operations Research, 55 (2007), 828-842.
doi: 10.1287/opre.1070.0429.![]() ![]() |
[4] |
L. Cheng and Z. Wana, Bilevel newsvendor models considering retailer with CVaR objective, Computers Industrial Engineering, 57 (2009), 310-318.
doi: 10.1016/j.cie.2008.12.002.![]() ![]() |
[5] |
A. Federgruen and Y. S. Zheng, A simple and efficient algorithm for computing optimal (r, Q) Policies in continuous-review stochastic inventory systems, Operations Research, 40 (1992), 808-813.
doi: 10.1287/opre.40.2.384.![]() ![]() ![]() |
[6] |
J. Gotoh and Y. Takano, Newsvendor solutions via conditional value-at-risk minimization, EuropeanJournal of Operational Research, 179 (2007), 80-96.
doi: 10.1016/j.ejor.2006.03.022.![]() ![]() |
[7] |
G. Hadley and M. Whittin, Analysis of Inventory Systems, 2 edition, Prentice-Hall, New York, 1963.
![]() |
[8] |
W. J. Hopp and M. L. Spearman, Factory Physics, 2 edition, McGraw-Hill, New York, 2001.
![]() |
[9] |
S. Moosa, A. Mohammed and S. S. Yadavalli, A note on evaluating the risk in continuous review inventory systems, International Journal of Production Research, 47 (2009), 5543-5558.
![]() |
[10] |
J. G. Murillo, M. A. Arias and L. C. Franco,
Riesgo Operativo: Técnicas de modelación cuantitativa, 1st Sello Editorial Universidad de Medellín, Colombia, 2014.
![]() |
[11] |
G. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk, in Probabilistic
Constrained Optimization, Nonconvex Optim. Appl., 49, Kluwer Acad. Publ., Dordrecht,
2000,272-281.
doi: 10.1007/978-1-4757-3150-7_15.![]() ![]() ![]() |
[12] |
D. E. Platt, L. W. Robinson and R. B. Freund, Tractable (Q, R) heuristic models for constrained service levels, Management Science, 43 (1997), 951-965.
doi: 10.1287/mnsc.43.7.951.![]() ![]() |
[13] |
M. E. Puerta, M. A. Arias and J. I. Londoño,
Matemáticas Aplicadas: Optimización de Inventarios Aleatorios, 1st Sello Editorial Universidad de Medellín, Colombia, 2011.
![]() |
[14] |
R. T. Rockafellar and S. P. Uryasev, Conditional Value-at-Risk for general loss distributions, Journal of Banking and Finance, 23 (2002), 1443-1471.
![]() |
[15] |
H. N. Shi, D. Li and Ch. Gu, The Schur-convexity of the mean of a convex function, Applied Mathematics Letters, 22 (2009), 932-937.
doi: 10.1016/j.aml.2008.04.017.![]() ![]() ![]() |
[16] |
R. Vinod, S. Amitabh and J. B. Raturi, On incorporating business risk into continuous review inventory models, European Journal of Operational Research, 75 (1994), 136-150.
![]() |
[17] |
X. M. Zhang and Y. M. Chu, Convexity of the integral arithmetic mean of a convex function, Rocky Mountain Journal of Mathematics, 40 (2010), 1061-1068.
doi: 10.1216/RMJ-2010-40-3-1061.![]() ![]() ![]() |
[18] |
Y. Zheng, On properties of stochastic inventory systems, Rocky Mountain Journal of Mathematics, 38 (1992), 87-101.
doi: 10.1287/mnsc.38.1.87.![]() ![]() |
[19] |
P. H. Zipkin, Foundations of Inventory Management, 2 edition, McGraw-Hill, New York, 2000.
![]() |