January  2017, 13(1): 251-265. doi: 10.3934/jimo.2016015

Influences of carbon emission abatement on firms' production policy based on newsboy model

School of Humanities and Economic Management, China University of Geosciences (Beijing), 29#, Xueyuan Rd., Beijing, China, 100083

* Corresponding author: Dayi He

Received  December 2014 Revised  September 2015 Published  March 2016

Fund Project: The research is funded by the Fundamental Research Funds for the Central Universities (2-9-2015-033).

Carbon emission allowance(CEA) has been becoming an important factor for firms to make production policies. Cap-and-trade system is fulfilling in many countries and regions as a market scheme promoted by many politicians and economists for its efficiency in resources assignment and promotion to abatement of carbon emission. More and more firms take CEA into their production plan which makes them confronted with influences from two markets, product market and CEA trade market in the meanwhile. Based on the Newsboy model for simplicity, and with assumption that demand of product is a stochastic variable, this paper establishes optimization models to get the optimal production policy under administrative scheme (command-and-control) and market scheme (cap-and-trade) respectively. By comparing the firms' production policy and expected net income(ENI) with or without the existence of CEA trade market, it is found that CEA trade market can reduce the optimal amount of production and carbon emission on the one hand, and it does not decrease firms' ENI on the another hand because the CEA trade market provides more options for firms to make production policy. Hence, in the proposed complete and perfect market, we concluded cautiously that market-based carbon emission abatement scheme is effective to reduce carbon emission and to accomplish regulatory carbon emission abatement goal.

Citation: Dayi He, Xiaoling Chen, Qi Huang. Influences of carbon emission abatement on firms' production policy based on newsboy model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 251-265. doi: 10.3934/jimo.2016015
References:
[1]

L. Barreto and S. Kypreos, Emissions trading and technology deployment in an energy-systems 'bottom up' model with technology learning, European Journal of Operational Research, 158 (2004), 243-261.  doi: 10.1016/S0377-2217(03)00350-3.  Google Scholar

[2]

S. Bode, Multi-period emission strading in the electricity sector-winners and losers, Energy Policy, 34 (2006), 680-691.   Google Scholar

[3]

S. Curkovic, Environmentally responsible manufacturing: The development and validation of a measurement model, European Journal of Operational Research, 146 (2003), 130-155.   Google Scholar

[4]

M. KaraS. SyriA. LehtiläS. Heylynen and V. Kekkonen, The impacts of EU CO2 emissions trading on electricity markets and electricity consumers in Finland, Energy Economics, 30 (2008), 193-211.   Google Scholar

[5]

R. D. Klassen and D. C. Whybark, Environmental management in operations, Decision Sciences, 30 (1999), 601-631.   Google Scholar

[6]

H. E. Klingelhöfer, Investments in EOP-technologies and emissions trading-results from a linear programming approach and sensitivity analysis, European Journal of Operational Research, 196 (2009), 370-383.  doi: 10.1016/j.ejor.2008.03.016.  Google Scholar

[7]

P. KunschJ. Springael and J. P. Brans, The zero-emission certificates: A novel CO$_2$-pollution reduction instrument applied to the electricity market, European Journal of Operational Research, 153 (2004), 386-399.  doi: 10.1016/S0377-2217(03)00160-7.  Google Scholar

[8]

S. LasalóH. IgnacioC. J. Carlos and S. Antonio, CO2 emission trading within the European Union and Annex B countries: The cement industry case, Energy Policy, 34 (2006), 72-87.   Google Scholar

[9]

C. F. LeeS. J. Lin and C. Lewis, Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors, Energy Policy, 36 (2008), 722-729.  doi: 10.1016/j.enpol.2007.10.025.  Google Scholar

[10]

P. Letmathe and N. Balakrishnan, Environmental considerations on the optimal product mix, European Journal of Operational Research, 167 (2005), 398-412.  doi: 10.1016/j.ejor.2004.04.025.  Google Scholar

[11]

C. LiaoH. Önal and M.-H. Chen, Average shadow price and equilibrium price: A case study of tradable pollution permit markets, European Journal of Operational Research, 196 (2009), 1207-1213.  doi: 10.1016/j.ejor.2008.04.032.  Google Scholar

[12]

P. Lund, Impacts of EU carbon emission trade directive on energy-intensive industries indicative micro-economic analyses, Ecological Economics, 63 (2007), 799-806.  doi: 10.1016/j.ecolecon.2007.02.002.  Google Scholar

[13]

J.-L. MoL. Zhu and Y. Fan, The impact of the EU ETS on the corporate value of European electricity corporations, Energy, 45 (2012), 3-11.  doi: 10.1016/j.energy.2012.02.037.  Google Scholar

[14]

T. PenkuhnT. SpenglerH. Püchert and O. Rentz, Environmental integrated production planning for the ammonia synthesis, European Journal of Operational Research, 97 (1997), 327-336.   Google Scholar

[15]

J. RemmersT. MorgensternG. SchonsH. D. Haasis and O. Rentz, Integration of air pollution control technologies in linear energy-environmental models, European Journal of Operational Research, 47 (1990), 306-316.   Google Scholar

[16]

D. ShaofuD. JunfengL. Liang and Z. Jingjiang, Optimal Production Policy with Emission Permits and Trading, Chinese Journal of Management Science, 17 (2009), 81-86.   Google Scholar

[17]

H. van Asselt and F. Biermann, European emissions trading and the international competitiveness of energy-intensive industries: A legal and political evaluation of possible supporting measures, Energy Policy, 35 (2007), 497-506.  doi: 10.1016/j.enpol.2005.12.013.  Google Scholar

[18]

F. Wirl, Evaluation of management strategies under environmental constraints, European Journal of Operational Research, 55 (1991), 191-200.   Google Scholar

[19]

J. Zhang, Emission-dependent Production and Operation Optimization with Emission Permits and Trading, Ph. D thesis, University of Science and Technology of China, 2010. Google Scholar

show all references

References:
[1]

L. Barreto and S. Kypreos, Emissions trading and technology deployment in an energy-systems 'bottom up' model with technology learning, European Journal of Operational Research, 158 (2004), 243-261.  doi: 10.1016/S0377-2217(03)00350-3.  Google Scholar

[2]

S. Bode, Multi-period emission strading in the electricity sector-winners and losers, Energy Policy, 34 (2006), 680-691.   Google Scholar

[3]

S. Curkovic, Environmentally responsible manufacturing: The development and validation of a measurement model, European Journal of Operational Research, 146 (2003), 130-155.   Google Scholar

[4]

M. KaraS. SyriA. LehtiläS. Heylynen and V. Kekkonen, The impacts of EU CO2 emissions trading on electricity markets and electricity consumers in Finland, Energy Economics, 30 (2008), 193-211.   Google Scholar

[5]

R. D. Klassen and D. C. Whybark, Environmental management in operations, Decision Sciences, 30 (1999), 601-631.   Google Scholar

[6]

H. E. Klingelhöfer, Investments in EOP-technologies and emissions trading-results from a linear programming approach and sensitivity analysis, European Journal of Operational Research, 196 (2009), 370-383.  doi: 10.1016/j.ejor.2008.03.016.  Google Scholar

[7]

P. KunschJ. Springael and J. P. Brans, The zero-emission certificates: A novel CO$_2$-pollution reduction instrument applied to the electricity market, European Journal of Operational Research, 153 (2004), 386-399.  doi: 10.1016/S0377-2217(03)00160-7.  Google Scholar

[8]

S. LasalóH. IgnacioC. J. Carlos and S. Antonio, CO2 emission trading within the European Union and Annex B countries: The cement industry case, Energy Policy, 34 (2006), 72-87.   Google Scholar

[9]

C. F. LeeS. J. Lin and C. Lewis, Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors, Energy Policy, 36 (2008), 722-729.  doi: 10.1016/j.enpol.2007.10.025.  Google Scholar

[10]

P. Letmathe and N. Balakrishnan, Environmental considerations on the optimal product mix, European Journal of Operational Research, 167 (2005), 398-412.  doi: 10.1016/j.ejor.2004.04.025.  Google Scholar

[11]

C. LiaoH. Önal and M.-H. Chen, Average shadow price and equilibrium price: A case study of tradable pollution permit markets, European Journal of Operational Research, 196 (2009), 1207-1213.  doi: 10.1016/j.ejor.2008.04.032.  Google Scholar

[12]

P. Lund, Impacts of EU carbon emission trade directive on energy-intensive industries indicative micro-economic analyses, Ecological Economics, 63 (2007), 799-806.  doi: 10.1016/j.ecolecon.2007.02.002.  Google Scholar

[13]

J.-L. MoL. Zhu and Y. Fan, The impact of the EU ETS on the corporate value of European electricity corporations, Energy, 45 (2012), 3-11.  doi: 10.1016/j.energy.2012.02.037.  Google Scholar

[14]

T. PenkuhnT. SpenglerH. Püchert and O. Rentz, Environmental integrated production planning for the ammonia synthesis, European Journal of Operational Research, 97 (1997), 327-336.   Google Scholar

[15]

J. RemmersT. MorgensternG. SchonsH. D. Haasis and O. Rentz, Integration of air pollution control technologies in linear energy-environmental models, European Journal of Operational Research, 47 (1990), 306-316.   Google Scholar

[16]

D. ShaofuD. JunfengL. Liang and Z. Jingjiang, Optimal Production Policy with Emission Permits and Trading, Chinese Journal of Management Science, 17 (2009), 81-86.   Google Scholar

[17]

H. van Asselt and F. Biermann, European emissions trading and the international competitiveness of energy-intensive industries: A legal and political evaluation of possible supporting measures, Energy Policy, 35 (2007), 497-506.  doi: 10.1016/j.enpol.2005.12.013.  Google Scholar

[18]

F. Wirl, Evaluation of management strategies under environmental constraints, European Journal of Operational Research, 55 (1991), 191-200.   Google Scholar

[19]

J. Zhang, Emission-dependent Production and Operation Optimization with Emission Permits and Trading, Ph. D thesis, University of Science and Technology of China, 2010. Google Scholar

Figure 1.  Optimal decision making without CEA trading
Figure 2.  Production decision-making with CEA trading
Figure 3.  Influence of CEA trading on firm's decision on production plan
Figure 4.  Influence of CEA's price when production limited by CEA constraint
Figure 5.  Influence of CEA's price when the firm is not limited by CEA constraint
Figure 6.  Influence of product price when production limited by CEA constraint
Table 1.  Influence of CEA's price when production limited by CEA
PcQ1*E[Π(Q1*)]Limited by CEAQ2*E[Π(Q2*)]Producing
01505999.99Y---
301505999.99Y246.078711.93Y
501505999.99Y227.826961.68Y
701505999.99Y06570N
901505999.99Y06570N
PcQ1*E[Π(Q1*)]Limited by CEAQ2*E[Π(Q2*)]Producing
01505999.99Y---
301505999.99Y246.078711.93Y
501505999.99Y227.826961.68Y
701505999.99Y06570N
901505999.99Y06570N
Table 2.  Influence of CEA's price when the firm is not limited by CEA constraint
PcQ1*E[Π(Q1*)]Limited by CEAQ2*E[Π(Q2*)]Producing
0272.1811961.68N---
30272.1811961.68N246.0713211.93Y
50272.1811961.68N227.8214461.68Y
70272.1811961.68N017250N
90272.1811961.68N023250N
PcQ1*E[Π(Q1*)]Limited by CEAQ2*E[Π(Q2*)]Producing
0272.1811961.68N---
30272.1811961.68N246.0713211.93Y
50272.1811961.68N227.8214461.68Y
70272.1811961.68N017250N
90272.1811961.68N023250N
Table 3.  Influence of product price when production limited by CEA constraint
PmQ1*E[Π(Q1*)]Limited by CEAQ2*E[Π(Q2*)]Producing
351502249.99Y227.292886.92Y
451502249.99Y237.445178.58Y
551502249.99Y243.677525.61Y
651502249.99Y248.169904.55Y
751502249.99Y251.6512304.57Y
PmQ1*E[Π(Q1*)]Limited by CEAQ2*E[Π(Q2*)]Producing
351502249.99Y227.292886.92Y
451502249.99Y237.445178.58Y
551502249.99Y243.677525.61Y
651502249.99Y248.169904.55Y
751502249.99Y251.6512304.57Y
[1]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[4]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (76)
  • HTML views (402)
  • Cited by (1)

Other articles
by authors

[Back to Top]