Article Contents
Article Contents

# A linear-quadratic control problem of uncertain discrete-time switched systems

• * Corresponding author
• This paper studies a linear-quadratic control problem for discrete-time switched systems with subsystems perturbed by uncertainty. Analytical expressions are derived for both the optimal objective function and the optimal switching strategy. A two-step pruning scheme is developed to efficiently solve such problem. The performance of this method is shown by two examples.

Mathematics Subject Classification: Primary: 49N10, 49L20; Secondary: 65K05.

 Citation:

•  Algorithm 1:(Two-step pruning scheme) 1: Set $\tilde{H}_{0}=\{(Q_{f}, 0)\}$; 2: for $k=0$ to $N-1$ do 3:  for all $(P, \gamma)\in \tilde{H}_{k}$ do 4:   $\Gamma_{k}(P, \gamma)=\emptyset$; 5:   for i=1 to m do 6:    $P^{(i)}=\rho_{i}(P)$, 7:    $\gamma^{(i)}=\gamma+\frac{1}{3}\|\sigma_{N-k}\|^{2}_{P}$, 8:    $\Gamma_{k}(P, \gamma)=\Gamma_{k}(P, \gamma)\bigcup\{(P^{(i)}, \gamma^{(i)})\}$; 9:   end for 10:   for i=1 to m do 11:    if $(P^{(i)}, \gamma^{(i)})$ satisfies the condition in Lemma 5.3, then 12:     $\Gamma_{k}(P, \gamma)=\Gamma_{k}(P, \gamma)\backslash\{(P^{(i)}, \gamma^{(i)})\}$; 13:    end if 14:   end for 15:  end for 16:  $\tilde{H}_{k+1}=\bigcup\limits_{(P, \gamma)\in \tilde{H}_{k}}\Gamma_{k}(P, \gamma)$; 17:  $\hat{H}_{k+1}=\tilde{H}_{k+1}$; 18:  for i=1 to $|\hat{H}_{k+1}|$ do 19:   if $(\hat{P}^{(i)}, \hat{\gamma}^{(i)})$ satisfies the condition in Lemma 5.4, then 20:    $\hat{H}_{k+1}=\hat{H}_{k+1}\backslash\{(\hat{P}^{(i)}, \hat{\gamma}^{(i)})\}$; 21:   end if 22:  end for 23: end for 24: $J(0, x_{0})=\min\limits_{(P, \gamma)\in \hat{H}_{N}}(\|x_{0}\|^{2}_{P}+\gamma).$

Table 1.  Size of $\tilde{H}_{k}$ and $\hat{H}_{k}$ for Example 3

 $k$ 1 2 3 4 5 6 7 8 9 10 $|\tilde{H}_{k}|$ 2 5 4 4 7 7 4 7 7 7 $|\hat{H}_{k}|$ 2 2 2 3 3 2 3 3 3 3

Table 2.  The optimal results of Example 3

 $k$ $y^{*}(k)$ $r_{k}$ $x(k)$ $u^{*}(k)$ $J(k,x_{k})$ 0 2 - $(3,-1)^{\tau}$ -0.7861 12.9774 1 2 0.6294 $(1.2768,-0.5093)^{\tau}$ -0.2579 2.5122 2 2 0.8116 $(0.5908,-0.1764)^{\tau}$ -0.1749 0.6456 3 2 -0.7460 $(0.1649,-0.1864)^{\tau}$ 0.0761 0.2084 4 2 0.8268 $(0.1373,0.0270)^{\tau}$ -0.1143 0.1582 5 1 0.2647 $(0.0765,-0.0108)^{\tau}$ -0.0495 0.1137 6 2 -0.8049 $(0.0122,-0.1408)^{\tau}$ 0.1221 0.1113 7 2 -0.4430 $(-0.0503,-0.0685)^{\tau}$ 0.0918 0.0765 8 2 0.0938 $(-0.0716,0.0057)^{\tau}$ 0.005 0.0443 9 2 0.9150 $(0.0846,0.0953)^{\tau}$ -0.1444 0.0678

Table 3.  Size of $\tilde{H}_{k}$ and $\hat{H}_{k}$ for Example 4

 $k$ 1 2 3 4 5 6 7 8 9 10 $|\tilde{H}_{k}|$ 2 5 12 9 9 9 9 9 9 9 $|\hat{H}_{k}|$ 2 4 3 3 3 3 3 3 3 3

Table 4.  The optimal results of Example 4

 $k$ $y^{*}(k)$ $r_{k}$ $x(k)$ $u^{*}(k)$ $J(k,x_{k})$ 0 5 - $(3,-1)^{\tau}$ -0.7273 11.0263 1 1 0.6294 $(0.3356,-0.1190)^{\tau}$ -0.1808 0.6251 2 2 0.8116 $(0.4526,-0.2186)^{\tau}$ -0.0892 0.5116 3 1 -0.7460 $(0.0702,-0.2376)^{\tau}$ 0.1421 0.2063 4 2 0.8268 $(0.1276,-0.0128)^{\tau}$ -0.0608 0.1428 5 2 0.2647 $(0.0805,0.0069)^{\tau}$ -0.0523 0.1121 6 2 -0.8049 $(-0.0454,-0.0908)^{\tau}$ 0.1105 0.1113 7 2 -0.4430 $(-0.0700,-0.0503)^{\tau}$ 0.0931 0.0690 8 1 0.0938 $(-0.0178,0.0250)^{\tau}$ -0.0062 0.0426 9 2 0.9150 $(0.0747,0.1103)^{\tau}$ -0.1522 0.0615
•  [1] A. Bemporad, F. Borrelli and M. Morari, On the optimal control law for linear discrete time hybrid systems, Lecture Notes in Computer Science, Hybrid System: Computation and Control, 2289 (2002), 222-292.  doi: 10.1007/3-540-45873-5_11. [2] S. C. Benga and R. A. Decarlo, Optimal control of switching systems, Automatica, 41 (2005), 11-27.  doi: 10.1016/j.automatica.2004.08.003. [3] F. Borrelli, M. Baotic, A. Bemporad and M. Morari, Dynamic programming for contrained optimal control of discrete-time linear hybrid systems, Automatica, 41 (2005), 1709-1721.  doi: 10.1016/j.automatica.2005.04.017. [4] S. Boubakera, M. Djemaic, N. Manamannid and F. M'Sahlie, Active modes and switching instants identification for linear switched systems based on discrete particle swarm optimization, Applied Soft Computing, 14 (2014), 482-488.  doi: 10.1016/j.asoc.2013.09.009. [5] H. V. Esteban, C. Patrizio, M. Richard and B. Franco, Discrete-time control for switched positive systems with application to mitigating viral escape, International Journal of Robust and Nonlinear Control, 21 (2011), 1093-1111.  doi: 10.1002/rnc.1628. [6] Y. Gao, Uncertain models for single facility location problems on networks, Applied Mathematical Modelling, 36 (2012), 2592-2599.  doi: 10.1016/j.apm.2011.09.042. [7] J. Gao and L. Duan, Linear-quadratic switching control with switching cost, Automatica, 48 (2012), 1138-1143.  doi: 10.1016/j.automatica.2012.03.006. [8] D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292. [9] H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for optimal discrete-valued control problems, Automatica, 35 (1999), 1401-1407.  doi: 10.1016/S0005-1098(99)00050-3. [10] F. Li, P. Shi, L. Wu, M. V. Basin and C. C. Lim, Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems, IEEE Transactions on Industrial Electronics, 62 (2015), 2330-2340.  doi: 10.1109/TIE.2014.2351379. [11] B. Lincoln and A. Rantzer, Relaxing dynamic programming, IEEE Transactions on Automatic Control, 51 (2006), 1249-1260.  doi: 10.1109/TAC.2006.878720. [12] B. Liu, Why is there a need for uncertainty theory, Journal of Uncertain Systems, 6 (2012), 3-10. [13] B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. [14] B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-540-39987-2. [15] Y. Liu and M. Ha, Expected value of function of uncertain variables, Journal of Uncertain Systems, 4 (2010), 181-186. [16] C. Liu, Z. Gong and E. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, Journal of Industrial and Management Optimization, 5 (2009), 835-850.  doi: 10.3934/jimo.2009.5.835. [17] R. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.  doi: 10.1016/j.automatica.2008.10.031. [18] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, New York, 1991. [19] C. Tomlin, G. J. Pappas, J. Lygeros, D. N. Godbole and S. Sastry, Hybrid control models of next generation air traffic management, Hybrid Systems IV, 1273 (1997), 378-404.  doi: 10.1007/BFb0031570. [20] L. Y. Wang, A. Beydoun, J. Sun and I. Kolmanasovsky, Optimal hybrid control with application to automotive powertrain systems, Lecture Notes in Control and Information Science, 222 (1997), 190-200.  doi: 10.1007/BFb0036095. [21] S. Woon, V. Rehbock and R. Loxton, Global optimization method for continuous-time sensor scheduling, Nonlinear Dynamic Systems Theory, 10 (2010), 175-188. [22] L. Wu, D. Ho and C. Li, Sliding mode control of switched hybrid systems with stochastic perturbation, Systems & Control Letters, 60 (2011), 531-539.  doi: 10.1016/j.sysconle.2011.04.007. [23] X. Xu and P. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417. [24] H. Yan and Y. Zhu, Bang-bang control model for uncertain switched systems, Applied Mathematical Modelling, 39 (2015), 2994-3002.  doi: 10.1016/j.apm.2014.10.042. [25] H. Yan and Y. Zhu, Bang-bang control model with optimistic value criterion for uncertain switched systems, Journal of Intelligent Manufacturing, (2015), 1-8.  doi: 10.1007/s10845-014-0996-2. [26] W. Zhang, J. Hu and A. Abate, On the value function of the discrete-time switched lqr problem, IEEE Transactions on Automatic Control, 54 (2009), 2669-2674.  doi: 10.1109/TAC.2009.2031574. [27] W. Zhang, J. Hu and J. Lian, Quadratic optimal control of switched linear stochastic systems, Systems & Control Letters, 59 (2010), 736-744.  doi: 10.1016/j.sysconle.2010.08.010. [28] X. Zhang and X. Chen, A new uncertain programming model for project scheduling problem, Information: An International Interdisciplinary Journal, 15 (2012), 3901-3910. [29] Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems: An International Journal, 41 (2010), 535-547.  doi: 10.1080/01969722.2010.511552. [30] Y. Zhu, Functions of uncertain variables and uncertain programmin, Journal of Uncertain Systems, 6 (2012), 278-288.

Tables(5)