[1]
|
J. M. Barizilai and M. Borwein, Two point step size gradient methods, IMA Journal on Numerical Analysis, 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141.
|
[2]
|
H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejèer-monotone methods in Hilbert spaces, Mathematical Methods and Operations Research, 26 (2001), 248-264.
doi: 10.1287/moor.26.2.248.10558.
|
[3]
|
S. Bellavia and B. Morini, A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM Journal on Scientific Computing, 23 (2001), 940-960.
doi: 10.1137/S1064827599363976.
|
[4]
|
Y. H. Dai and Y. X. Yuan, A nonlinear conjugate gradient with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992.
|
[5]
|
J. E. Dennis and J. J. Moré, A characterization of superlinear convergence and its application to quasi-Newton methods, Mathematics of Computation, 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1.
|
[6]
|
J. E. Dennis and J. J. Moré, Quasi-Newton method, motivation and theory, SIAM Review, 19 (1997), 46-89.
doi: 10.1137/1019005.
|
[7]
|
S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems, Optimization Methods and Software, 5 (1995), 319-345.
doi: 10.1080/10556789508805619.
|
[8]
|
L. Han, G. H. Yu and L. T. Guan, Multivariate spectral gradient method for unconstrained optimization, Applied Mathematics and Computation, 201 (2008), 621-630.
doi: 10.1016/j.amc.2007.12.054.
|
[9]
|
A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distances for constrained optmization, Optimization, 41 (1997), 257-278.
doi: 10.1080/02331939708844339.
|
[10]
|
W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optimization Methods and Software, 18 (2003), 583-599.
doi: 10.1080/10556780310001610493.
|
[11]
|
W. La Cruz, J. M. Mart$\acute{i}$nez and M. Raydan, Spectral residual method without gradient minformation for solving large-scale nonlinear systems of equations, Mathematics of Computation, 75 (2006), 1429-1448.
doi: 10.1090/S0025-5718-06-01840-0.
|
[12]
|
Q. N. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA Journal on Numerical Analysis, 31 (2011), 1625-1635.
doi: 10.1093/imanum/drq015.
|
[13]
|
K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Applied Mathematics and Computation, 22 (1987), 333-361.
doi: 10.1016/0096-3003(87)90076-2.
|
[14]
|
K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Transactions on Mathematical Software, 16 (1990), 143-151.
doi: 10.1145/78928.78930.
|
[15]
|
L. Qi and J. Sun, A nonsmooth version of Newton's method, Mathematical Programming, 58 (1999), 353-367.
doi: 10.1007/BF01581275.
|
[16]
|
M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Applied Optimization, 22, Kluwer Acad. Publ., Dordrecht, 1999, 355–369.
doi: 10.1007/978-1-4757-6388-1_18.
|
[17]
|
C. W. Wang, Y. J. Wang and C. L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Mathematical Methods and Operations Research, 66 (2007), 33-46.
doi: 10.1007/s00186-006-0140-y.
|
[18]
|
A. J. Wood and B. F. Wollenberg,
Power Generations Operations and Control, Wiley, New York, 1996.
|
[19]
|
N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, Computing, 15 (2001), 239-249.
doi: 10.1007/978-3-7091-6217-0_18.
|
[20]
|
N. Yamashita and M. Fukushima, Modified Newton methods for sovling a semismooth reformulation of monotone complementary problems, Mathematical Programming, 76 (1997), 469-491.
doi: 10.1007/BF02614394.
|
[21]
|
Z. S. Yu, J. Sun and Y. Qin, A multivariate spectral projected gradient method for bound constrained optimization, Journal of Computational and Applied Mathematics, 235 (2011), 2263-2269.
doi: 10.1016/j.cam.2010.10.023.
|
[22]
|
G. H. Yu, S. Z. Niu and J. H. Ma, Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, Journal of Industrial and Management Optimization, 9 (2013), 117-129.
doi: 10.3934/jimo.2013.9.117.
|
[23]
|
L. Zhang and W. J. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, Journal of Computational and Applied Mathematics, 196 (2006), 478-484.
doi: 10.1016/j.cam.2005.10.002.
|