\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Higher-order sensitivity analysis in set-valued optimization under Henig efficiency

  • Zhenhua Peng, E-mail: pzhjearya@gmail.com

    Zhenhua Peng, E-mail: pzhjearya@gmail.com; 

    Zhenhua Peng, E-mail: pzhjearya@gmail.comYihong Xu, Professor, major field of interest is in the area of set-valued optimization. E-mail: xuyihong@ncu.edu.cn

    Yihong Xu, Professor, major field of interest is in the area of set-valued optimization. E-mail: xuyihong@ncu.edu.cn
the National Natural Science Foundation of China Grant 11461044, the Natural Science Foundation of Jiangxi Province (20151BAB201027) and the Science and Technology Foundation of the Education Department of Jiangxi Province(GJJ12010).
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The behavior of the perturbation map is analyzed quantitatively by using the concept of higher-order contingent derivative for the set-valued maps under Henig efficiency. By using the higher-order contingent derivatives and applying a separation theorem for convex sets, some results concerning higher-order sensitivity analysis are established.

    Mathematics Subject Classification: Primary: 49Q12, 46G05; Secondary: 90C31.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J.P. Aubin and  H. FrankowskaSet-valued Analysis, Birkhäuser, Boston, 1990. 
    [2] H.P. Benson, An improved denition of proper efficiency for vector maximization with respect to cones, Journal of Mathematical Analysis and Applications, 71 (1979), 232-241. 
    [3] J.M. Borwein and D. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, 338 (1993), 105-122. 
    [4] H.Y. Deng and W. Wei, Existence and stability analysis for nonlinear optimal control problems with 1-mean equicontinuous controls, Journal of Industrial and Management Optimization, 11 (2015), 1409-1422. 
    [5] A.V. FiaccoIntroduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press. New York, 1983. 
    [6] M.I. Henig, Proper efficiency with respect to cones, Journal of Optimization Theory and Applications, 36 (1982), 387-407. 
    [7] Y.D. Hu and C. Ling, Connectedness of cone superefficient point sets in locally convex topo-logical vector spaces, Journal of Optimization Theory and Applications, 107 (2000), 433-446. 
    [8] J. JahnVector Optimization: Theory, Springer Berlin Heidel-berg, 2004. 
    [9] S.J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization, Mathematica Applicata, 11 (1998), 49-53. 
    [10] S. J. Li and C. R. Chen, Higher order optimality conditions for henig efficient solutions in set-valued optimization, Journal of Mathematical Analysis and Applications, 323 (2006), 1184-1200. 
    [11] Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operations Research, 48 (1998), 207-217. 
    [12] S. J. LiX. K. Sun and J. Zhai, Second-order contingent derivatives of set-valued mappings with application to set-valued optimization, Applied Mathematics and Computation, 218 (2012), 6874-6886. 
    [13] X. B. LiX. J. Long and Z. Lin, Stability of solution mapping for parametric symmetric vector equilibrium problems, Journal of Industrial and Management Optimization, 11 (2015), 661-671. 
    [14] Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems, Journal of Optimization Theory and Applications, 152 (2012), 439-449. 
    [15] R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in non-linear programming, Mathematical Programming Study, 17 (1982), 28-66. 
    [16] B. H. Sheng and S. Y. Liu, Sensitivity analysis in vector optimization under Benson proper efficiency, Journal of Mathematical Research & Exposition, 22 (2002), 407-412. 
    [17] D. S. Shi, Contingent derivative of the perturbation in multiobjective optimization, Journal of Optimization Theory and Applications, 70 (1991), 351-362. 
    [18] D. S. Shi, Sensitivity analysis in convex vector optimization, Journal of Optimization Theory and Applications, 77 (1993), 145-159. 
    [19] T. Tanino, Sensitivity analysis in multiobjective optimization, Journal of Optimization Theory and Applications, 56 (1988), 479-499. 
    [20] T. Tanino, Stability and sensitivity analysis in convex vector optimization, SIAM Journal on Control and Optimization, 26 (1988), 521-536. 
    [21] Q. L. Wang and S. J. Li, Generalized higher-order optimality conditions for set-valued opti-mization under Henig efficiency, Numerical Functional Analysis and Optimization, 30 (2009), 849-869. 
    [22] D. E. Ward, A chain rule for first and second order epiderivatives and hypoderivatives, Journal of Mathematical Analysis and Applications, 348 (2008), 324-336. 
    [23] X. Y. Zheng, Proper efficiency in locally convex topological vector spaces, Journal of Opti-mization Theory and Applications, 94 (1997), 469-486. 
  • 加载中
SHARE

Article Metrics

HTML views(1952) PDF downloads(222) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return