# American Institute of Mathematical Sciences

January  2017, 13(1): 329-347. doi: 10.3934/jimo.2016020

## Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits

 Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan

* Corresponding author: Yu-Chung Tsao

Received  January 2015 Published  March 2016

Non-instantaneously deteriorating products retain their quality for a certain period before beginning to deteriorate. Retailers commonly adjust their retail prices when products shift from a non-deteriorating state to a deteriorating state in order to stimulate demand. It is essential to consider this price adjustment for inventory models of non-instantaneously deteriorating products under trade credit, due to the fact that the calculation of earned interest is based on the retail price. This paper considers the problem of ordering non-instantaneously deteriorating products under price adjustment and trade credit. Our objective was to determine the optimal replenishment cycle time while minimizing total costs. The problem is formulated as three piecewise nonlinear functions, which are solved through optimization. Numerical simulation is used to illustrate the solution procedures and discuss how system parameters influence inventory decisions and total cost. We also show that a policy of price adjustment is superior to that of fixed pricing with regard to profit maximization.

Citation: Yu-Chung Tsao. Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits. Journal of Industrial and Management Optimization, 2017, 13 (1) : 329-347. doi: 10.3934/jimo.2016020
##### References:

show all references

##### References:
The graphic illustrations of TC versus T

1. When $t_{d}$=0.5 and $t_{C}$=0.32. When $t_{d}$=0.3 and $t_{C}$=0.5 3. When $t_{d}$=0.5 and $t_{C}$=0.5

Effects of replenishment cycle time on total cost
 When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.5$ $50\%T^{*}$ TC=481.46 $(9.64\%)$ ${}^{a}$ TC=448.79 $(8.75\%)$ TC=$471.03 (9.77\%)$ $75\%T^{*}$ TC=446.18$(1.61\%)$ TC=$418.69 (1.46\%)$ TC=436.08$(1.63\%)$ $T^{*}$ TC=439.13$(0\%)$ TC=412.67$(0\%)$ TC=429.09$(0\%)$ $125\%T^{*}$ TC=443.36 $(0.96\%)$ TC=416.28$(0.87\%)$ TC=433.28$(0.98\%)$ $150\%T^{*}$ TC=453.24$(3.21\%)$ TC=424.71$(2.92\%)$ TC=443.07$(3.26\%)$
 When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.5$ $50\%T^{*}$ TC=481.46 $(9.64\%)$ ${}^{a}$ TC=448.79 $(8.75\%)$ TC=$471.03 (9.77\%)$ $75\%T^{*}$ TC=446.18$(1.61\%)$ TC=$418.69 (1.46\%)$ TC=436.08$(1.63\%)$ $T^{*}$ TC=439.13$(0\%)$ TC=412.67$(0\%)$ TC=429.09$(0\%)$ $125\%T^{*}$ TC=443.36 $(0.96\%)$ TC=416.28$(0.87\%)$ TC=433.28$(0.98\%)$ $150\%T^{*}$ TC=453.24$(3.21\%)$ TC=424.71$(2.92\%)$ TC=443.07$(3.26\%)$
Effects of replenishment cycle time on total cost (When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$)
 Parameter $T^{*}$ $TC^{*}$ h =1 2.89 403.24 h=2 2.31 439.13 h=3 1.99 469.42 R =40 2.06 420.81 R =80 2.31 439.13 R =120 2.53 455.65 $\theta =0.05$ 2.63 425.04 $\theta=0.1$ 2.31 439.13 $\theta=0.15$ 2.10 450.08 $\lambda$=0.1 1.91 470.58 $\lambda$=0.2 2.31 439.13 $\lambda$=0.3 3.10 398.34 $I_{e}=0.05$ 2.32 440.10 $I_{e}=0.10$ 2.31 439.13 $I_{e}=0.15$ 2.30 438.15 $I_{P} =0.10$ 2.56 426.14 $I_{P}=0.15$ 2.31 439.13 $I_{P}=0.20$ 2.12 450.65 $D_{1}=25$ 1.33 367.97 $D_{1}=50$ 2.31 439.13 $D_{1}=75$ 2.98 488.22 $D_{2}=15$ 3.82 274.97 $D_{2}=30$ 2.31 439.13 $D_{2}=45$ 1.50 569.49
 Parameter $T^{*}$ $TC^{*}$ h =1 2.89 403.24 h=2 2.31 439.13 h=3 1.99 469.42 R =40 2.06 420.81 R =80 2.31 439.13 R =120 2.53 455.65 $\theta =0.05$ 2.63 425.04 $\theta=0.1$ 2.31 439.13 $\theta=0.15$ 2.10 450.08 $\lambda$=0.1 1.91 470.58 $\lambda$=0.2 2.31 439.13 $\lambda$=0.3 3.10 398.34 $I_{e}=0.05$ 2.32 440.10 $I_{e}=0.10$ 2.31 439.13 $I_{e}=0.15$ 2.30 438.15 $I_{P} =0.10$ 2.56 426.14 $I_{P}=0.15$ 2.31 439.13 $I_{P}=0.20$ 2.12 450.65 $D_{1}=25$ 1.33 367.97 $D_{1}=50$ 2.31 439.13 $D_{1}=75$ 2.98 488.22 $D_{2}=15$ 3.82 274.97 $D_{2}=30$ 2.31 439.13 $D_{2}=45$ 1.50 569.49
Effects of system parameters (when${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$)
 Parameter $T^{*}$ $TC^{*}$ h =1 2.40 382.19 h=2 1.91 412.67 h=3 1.63 438.08 R =40 1.61 389.91 R =80 1.91 2.17 R =120 412.67 432.30 $\theta$=0.05 2.16 399.93 $\theta=0.1$ 1.91 412.67 $\theta=0.15$ 1.74 423.22 $\lambda$=0.1 1.60 438.45 $\lambda=0.2$ 1.91 412.67 $\lambda=0.3$ 2.49 380.27 $I_{e}$=0.05 1.95 416.21 $I_{e}=0.10$ 1.91 412.67 $I_{e}=0.15$ 1.86 409.05 $I_{P}$=0.10 2.10 404.72 $I_{P}=0.15$ 1.91 412.67 $I_{P}=0.20$ 1.76 419.51 $D_{1}$=25 1.32 368.04 $D_{1}=50$ 1.91 412.67 $D_{1}=75$ 2.35 446.46 $D_{2}=15$ 3.09 251.14 $D_{2}=30$ 1.91 412.67 $D_{2}=45$ 1.29 549.00
 Parameter $T^{*}$ $TC^{*}$ h =1 2.40 382.19 h=2 1.91 412.67 h=3 1.63 438.08 R =40 1.61 389.91 R =80 1.91 2.17 R =120 412.67 432.30 $\theta$=0.05 2.16 399.93 $\theta=0.1$ 1.91 412.67 $\theta=0.15$ 1.74 423.22 $\lambda$=0.1 1.60 438.45 $\lambda=0.2$ 1.91 412.67 $\lambda=0.3$ 2.49 380.27 $I_{e}$=0.05 1.95 416.21 $I_{e}=0.10$ 1.91 412.67 $I_{e}=0.15$ 1.86 409.05 $I_{P}$=0.10 2.10 404.72 $I_{P}=0.15$ 1.91 412.67 $I_{P}=0.20$ 1.76 419.51 $D_{1}$=25 1.32 368.04 $D_{1}=50$ 1.91 412.67 $D_{1}=75$ 2.35 446.46 $D_{2}=15$ 3.09 251.14 $D_{2}=30$ 1.91 412.67 $D_{2}=45$ 1.29 549.00
Effects of system parameters (when${\rm \; }t_{d}$=0.3 and $t_{C}$=0.5)
 Parameter $T^{*}$ $TC^{*}$ h =1 2.83 383.86 h=2 2.27 429.09 h=3 1.95 458.90 R =40 2.01 410.40 R =80 2.27 429.09 R =120 2.49 445.90 $\theta$=0.05 2.56 415.86 $\theta$=0.1 2.27 429.09 $\theta$=0.15 2.07 439.42 $\lambda$=0.1 1.88 459.17 $\lambda$=0.2 2.27 429.09 $\lambda$=0.3 3.00 390.41 $I_{e}$=0.05 2.30 431.83 $I_{e}$=0.10 2.27 429.09 $I_{e}$=0.15 2.23 426.31 $I_{P}$=0.10 2.51 418.60 $I_{P}$=0.15 2.27 429.09 $I_{P}$=0.20 2.09 438.18 $D_{1}$=25 1.33 359.50 $D_{1}$=50 2.27 429.09 $D_{1}$=75 2.92 477.32 $D_{2}$=15 3.75 269.41 $D_{2}$=30 2.27 429.09 $D_{2}$=45 1.47 555.33
 Parameter $T^{*}$ $TC^{*}$ h =1 2.83 383.86 h=2 2.27 429.09 h=3 1.95 458.90 R =40 2.01 410.40 R =80 2.27 429.09 R =120 2.49 445.90 $\theta$=0.05 2.56 415.86 $\theta$=0.1 2.27 429.09 $\theta$=0.15 2.07 439.42 $\lambda$=0.1 1.88 459.17 $\lambda$=0.2 2.27 429.09 $\lambda$=0.3 3.00 390.41 $I_{e}$=0.05 2.30 431.83 $I_{e}$=0.10 2.27 429.09 $I_{e}$=0.15 2.23 426.31 $I_{P}$=0.10 2.51 418.60 $I_{P}$=0.15 2.27 429.09 $I_{P}$=0.20 2.09 438.18 $D_{1}$=25 1.33 359.50 $D_{1}$=50 2.27 429.09 $D_{1}$=75 2.92 477.32 $D_{2}$=15 3.75 269.41 $D_{2}$=30 2.27 429.09 $D_{2}$=45 1.47 555.33
Effects of system parameters (when${\rm \; }t_{d}$=0.5 and $t_{C}$=0.5)
 Parameter $T^{*}$ $TC^{*}$ ${\rm \; }t_{d}=0.1$, $t_{C}=0.3$ 1.58 407.73 ${\rm \; }t_{d}=0.3$, $t_{C}=0.3$ 1.93 424.85 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.7$, $t_{C}=0.3$ 2.70 452.24 ${\rm \; }t_{d}=0.9$, $t_{C}=0.3$ 3.10 464.39 ${\rm \; }t_{d}=0.5$, $t_{C}=0.1$ 2.34 448.68 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.5$, $t_{C}=0.5$ 2.27 429.09 ${\rm \; }t_{d}=0.5$, $t_{C}=0.7$ 2.22 415.92 ${\rm \; }t_{d}=0.5$, $t_{C}=0.9$ 2.18 403.25
 Parameter $T^{*}$ $TC^{*}$ ${\rm \; }t_{d}=0.1$, $t_{C}=0.3$ 1.58 407.73 ${\rm \; }t_{d}=0.3$, $t_{C}=0.3$ 1.93 424.85 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.7$, $t_{C}=0.3$ 2.70 452.24 ${\rm \; }t_{d}=0.9$, $t_{C}=0.3$ 3.10 464.39 ${\rm \; }t_{d}=0.5$, $t_{C}=0.1$ 2.34 448.68 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.5$, $t_{C}=0.5$ 2.27 429.09 ${\rm \; }t_{d}=0.5$, $t_{C}=0.7$ 2.22 415.92 ${\rm \; }t_{d}=0.5$, $t_{C}=0.9$ 2.18 403.25
Comparison of two-phase pricing and one-phase pricing
 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.3 When ${\rm \; }t_{d}$=0.3 and $t_{C}$=0.5 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.5 Two-phase pricing $p_{1}$=39.22 $p_{1}$=38.28 $p_{1}$=38.81 $p_{2}$=23.77 $p_{2}$=28.48 $p_{2}$=23.25 T=1.19 T=2.33 T=1.10 TP=614.40 $(+14.05\%){}^{a}$ TP=415.09 $(+6.73\%){}^{ }$ TP=658.51 $(+14.13\%)$ One-phase pricing p=30.28 p=30.94 p=30.39 T=1.46 T=2.45 T=1.35 TP=538.69 TP=388.92 TP=576.50 a. the percentage of profit increasing
 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.3 When ${\rm \; }t_{d}$=0.3 and $t_{C}$=0.5 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.5 Two-phase pricing $p_{1}$=39.22 $p_{1}$=38.28 $p_{1}$=38.81 $p_{2}$=23.77 $p_{2}$=28.48 $p_{2}$=23.25 T=1.19 T=2.33 T=1.10 TP=614.40 $(+14.05\%){}^{a}$ TP=415.09 $(+6.73\%){}^{ }$ TP=658.51 $(+14.13\%)$ One-phase pricing p=30.28 p=30.94 p=30.39 T=1.46 T=2.45 T=1.35 TP=538.69 TP=388.92 TP=576.50 a. the percentage of profit increasing
 [1] Chandan Mahato, Gour Chandra Mahata. Optimal replenishment, pricing and preservation technology investment policies for non-instantaneous deteriorating items under two-level trade credit policy. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021123 [2] Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138 [3] Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084 [4] Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $\alpha\in (1, 2)$ with non-instantaneous impulses. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021058 [5] Yinuo Wang, Chuandong Li, Hongjuan Wu, Hao Deng. Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1767-1776. doi: 10.3934/dcdss.2022005 [6] Chui-Yu Chiu, Ming-Feng Yang, Chung-Jung Tang, Yi Lin. Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial and Management Optimization, 2013, 9 (4) : 945-965. doi: 10.3934/jimo.2013.9.945 [7] Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 [8] Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068 [9] Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012 [10] Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial and Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933 [11] Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091 [12] Chong Zhang, Yaxian Wang, Haiyan Wang. Design of an environmental contract under trade credits and carbon emission reduction. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021141 [13] Shuhua Zhang, Longzhou Cao, Zuliang Lu. An EOQ inventory model for deteriorating items with controllable deterioration rate under stock-dependent demand rate and non-linear holding cost. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021156 [14] Jun Li, Hairong Feng, Mingchao Wang. A replenishment policy with defective products, backlog and delay of payments. Journal of Industrial and Management Optimization, 2009, 5 (4) : 867-880. doi: 10.3934/jimo.2009.5.867 [15] Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial and Management Optimization, 2012, 8 (1) : 19-40. doi: 10.3934/jimo.2012.8.19 [16] Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial and Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425 [17] Sudip Adak, G. S. Mahapatra. Effect of reliability on varying demand and holding cost on inventory system incorporating probabilistic deterioration. Journal of Industrial and Management Optimization, 2022, 18 (1) : 173-193. doi: 10.3934/jimo.2020148 [18] Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial and Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263 [19] Yu-Chung Tsao, Hanifa-Astofa Fauziah, Thuy-Linh Vu, Nur Aini Masruroh. Optimal pricing, ordering, and credit period policies for deteriorating products under order-linked trade credit. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021152 [20] Yanju Zhou, Zhen Shen, Renren Ying, Xuanhua Xu. A loss-averse two-product ordering model with information updating in two-echelon inventory system. Journal of Industrial and Management Optimization, 2018, 14 (2) : 687-705. doi: 10.3934/jimo.2017069

2020 Impact Factor: 1.801